Total No. of Pages: 4

Seat	
No.	

T.Y. B.Tech. (E & TC) (Part - III) (Semester - V) (CBCS) Examination, January - 2023 SIGNALS AND SYSTEM

Sub. Code: 80807

7.35			day, 13 - 01 - 2023 o 1.00 p.m.		Total Marks: 70
Instructions:		 All Question are compulsory. Assume suitable data wherever necessary. Figures to the right indicate full marks. 			
Q1) Sol a)			ective type question. n represented by equati	on <i>y</i> (<i>t</i>)	= tx(t) is
	i)	Lin	ear system		
	ii)	Noi	n-linear system		
	iii)	Nei	ther linear nor non-linea	ır syster	n
	iv)	No	ne of these		
b)			mong the following op ion of discrete time sigr		s is not involved with the linear
	i)	Fol	ding Operation	ii)	Shifting Operation
	iii)	Mu	ltiplication Operation	iv)	Integration Operation
c)	The	distr	ributive property of cor	volutio	n is
	i)	x(t)	*h(t)=h(t)*x(t)		
	ii)	x(t)	*[h1(t)*h2(t)=[x(t)*h1(t)]	t)]*h2 (i	7)]
	iii)	x(t)	[h1(t)+h2(t)]=[x(t)*h1(t)+h2(t)]	(t)]+[x(t)]	t)*h2(t)
	iv)	Nor	ne of the above		

d)	A signal $x(t)$ can be transformed to $x(at)$ by using wh	ich of the below
	operation?	

i) Time reversal

ii) Time shifting

iii) Time scaling

iv) All of the above

e) The Fourier transform of a unit step function is given as

i) $F(j\omega) = 1/j\omega$

ii) $F(j\omega) = j\omega$

iii) $F(j\omega) = j/\omega$

iv) $F(j\omega) = \omega / j$

f) What is DTFT of sequence give $x(n) = a^n u(n)$

 $i) \qquad \frac{1}{1 - ae^{-jw}}$

ii) $\frac{1}{1-ae^{jw}}$

iii) $\frac{1}{1+ae^{jw}}$

iv) $\frac{1}{1+ae^{-j\omega}}$

g) What is the z-transform of the following finite duration signal?

$$x(n) = \{2, 4, 5, 7, 0, 1\}$$
?

i)
$$2+4z+5z^2+7z^3+z^4$$

ii)
$$2+4z+5z^2+7z^3+z^5$$

iii)
$$2+4z^{-1}+5z^{-2}+7z^{-3}+z^{-5}$$

iv)
$$2z^2 + 4z + 5 + 7z^{-1} + z^{-3}$$

Q2) Solve Any two

[14]

- a) Explain Classification of Signals.
- b) Find convolution of two sequences.

$$X[n] = 1$$
 for $0 \le n \le 4$

= 0 Elsewhere

$$Y[n] = 2^n$$
 for $0 \le n \le 6$

= 0 Elsewhere

c) Find the Fourier Transform of the Gate function.

Q3) Solve any two

[14]

- a) Determine even and odd part of following signals
 - i) $x[n] = \{-1, -1, -1, 1, 1, 1, 1\}$

ii)
$$x(t) = -2t$$
 $t < 0 &$
= t $t < 0$

- b) Convolve the sequences x(n): {2, 3, 1, 4} and $h(n) = \{-1,2,3\}$ using graphical method
- c) Explain properties of Fourier Transform

Q4) Solve any two

[14]

- a) Find DTFT of following
 - i) $x(n) = a^n u(n)$

ii)
$$x(n) = 2^n$$
 for $-2 \le n \le 2$
= 0 otherwise

b) Find Z Transform of following

i)
$$x(n) = \left(\frac{1}{2}\right)^n u(-n)$$

c) Develop direct form I and II realization of difference equation.

$$i)y(n) = b_0x(n) + b_1x(n-1) + b_2x(n-2) + b_3x(n-3) - a_1y(n-1) - a_2y(n-2) - a_3y(n-3)$$

Q5) Solve Any two

- a) Find 4 point DFT of following
 - i) $x(n) = \{-1, 2, 5, 4\}$
 - ii) $x(n) = \sin\left(\frac{\pi n}{2}\right)$
- b) Find inverse Z transform using Long Division Method
 - i) $\frac{1}{1+3z^{-1}+2z^{-2}} ROC|z| > 2$
- c) Find inverse Z transform using Partial Fraction Method
 - i) $\frac{8z-9}{z^2+5z-6}$ ROC|z|>3

6868 8080

SB - 201

Q4) Solve any two

 $[2 \times 7 = 14]$

- a) Explain edge emitting LED.
- b) Write note on light source linearity.
- c) Give comparison of various photodetectors.

Q5) Solve any two

 $[2 \times 7 = 14]$

4

0

- a) Explain 2×2 waveguide coupler.
- b) Explain in detail transmission formats and speeds in SONET?
- c) Write note on Tunable filters, tunable sources.

Seat 1

Total No. of Pages: 4

T.Y.B Tech. (E&TC) (Semester - V) (CBCS)

Examination, January - 2023

PCC-ETC-504: OPTICAL COMMUNICATION
Sub. Code: 80810

Day and Date : Tuesday, 24 - 01 - 2023

Total Marks:70

Instructions: 1)

Time:10.30 a.m. to 1.00 p.m.

- All questions are compulsory.
- Figure to the right indicate full marks.
 Assume suitable data if necessary.
- Q1) All questions are compulsory.

[14]

- a) The light sources used in fiber optics communication are____
 - i) LED's and Lasers
-) Phototransistors

iii) Xenon lights

- iv) Incadescent
- b) What is the numerical aperture of the fiber if the angle of acceptance is 16 degree?
 - i) 0.50

ii) 0.36

iii) 0.20

- iv) 0.27
- A multimode step index fiber has a normalized frequency of 72. Estimate the number of guided modes.
 - i) 2846

ii) 2592

iii) 2432

- iv) 2136
- d) Skew rays follow a _____
 - Hyperbolic path along the axis
 - ii) Parabolic path along the axis
 - iii) Helical path
 - iv) Path where rays changes angles at core-cladding interface

0

0

		À S	water	3D - 201	
e)			tio o	f input and oútput optical power	
	101	a particular optical wavelength			
	i)	True	ii)	False	
f)	The	e effects of intrinsic absorption	can t	oe minimized by	
	i)	Ionization			
	ii)	Radiation			
	iii)	Suitable choice of core and cl	addi	ng components	
	iv)	Melting			
g)		minant intrinsic loss mechanism aviolet and infrared absorption		ow absorption window between is	
	i)	Mie scattering	ii)	Rayleigh scattering	
	iii)	Stimulated Raman scattering	iv)	Stimulated brillouin scattering	
h) Mie scattering has in-homogeneities mainly in					
	i)	Forward direction	ii)	Backward direction	
	iii)	All direction	iv)	Core-cladding interface	
i)	communication?				
	i)	Invisible size interference	ii)	Infrared size interference	
	iii)	Inter-symbol interference	iv)	inter-shape interference	
j)	Pra	ctical pulse broadening value for	grac	led index fiber lies in the range of	
	-				
	i)	0.9 to 1.2 ns/km	ii)	0.2 to 1 ns/km	
n'int	iii)	0.23 to5ns/km	iv)	0.45 to 8 ns/km	

			i i			SI	3 - 201
	k)	The	modal noise car			III. BY BO HA	÷5
		i)	Decreasing wid	th of signal lon	igitud	dinal mode	
		ii)	increasing cohe	rence time			
		iii)	Decreasing num	nber of longitu	dinal	l modes	
		iv)	Using fiber with	n large numerio	al ap	perture	
	1)	Opt	ical fibers for co	mmunication u	ise ar	re mostly fabricated from	m
		i)	Plastic		ii)	silica or multicompon	ent glass
	÷	iii)	Ceramics		iv)	Copper	
	m)	The	recombination i	n indirect band	l-gap	semiconductors in slov	N
		i)	True		ii)	False	
	n)		articular laser str edges of devices		ned	so that the active region	n extends
		i)	True	18)	ii)	False	20
Q2)	Solv	e an	y two	V		1	2×7=14]
	a)		te down the defi eptance cone.	nition of critic	al ar	nd acceptance angle an	d explain
	b)		h the help of near		ain s	tep index and graded in	dex glass
	c)	Exp	olain different inc	loor and outdo	or fil	ber optic cables	
Q3)	Solv	e an	y two	7		[2×7=14]
	a)	Exp	olain in detail ben	ding losses in o	optic	al fiber.	42
		-					

- b) Explain polarization mode dispersion.
- c) Explain in detail with block diagram the nonlinear effects in optical fiber.

-3-

Total No. of Pages: 2

Seat	
No.	

T.Y.B.Tech. (Electronic and Telecommunication Engineering)

		(8	Semester- V) Exan DIGITAL AN Sub. C		DESIGN
			Saturday, 21 - 01 - 2023 m. to 1.00 p.m.		Total Marks :70
Instru	uctio	ns:	 All questions are con Use suitable assumption Draw necessary fig 	otions if requi	red. side of answer sheet.
Q1)	All	quest	ions are compulsory.		[7×2=14]
	a)	The	operator '&' is called	theo	perator.
		i)	Logical AND operator	ii)	Bitwise AND operator
		iii)	Arithmetic addition op	erator iv)	Concatenation operator
	b)	Wh			be used inside a process?
	=1	i)	WAIT	ii)	IF ELSE
		iii)	Variable declaration	iv)	PORT MAP
	c)	Pro	cess is astaten	nent.	
		i)	Concurrent	ii)	Sequential
		iii)	Delay	iv)	Both concurrent and sequential
	d)		w many flip flops are res?	necessary to	design a state machine with 25
		i)	2	ii)	5
		iii)	25	iv)	32

P.T.O.

SIGNAL x : SRD_LOGIC;

SIGNAL y: STD_LOGIC_VECTOR (3 DOWNTO 0);

- i) $y \le (1 = 5'1', OTHERS = 5'0');$
- ii) y := "0100";
- iii) y => "0100",
- iv) y => x;
- f) Which of the following is more volatile?
 - i) SRAM

ii) DRAM

iii) ROM

- iv) RAM
- g) PLA is used to implement_____
 - i) A complex sequential circuit
 - ii) A simple sequential circuit
 - iii) A complex combinational circuit
 - iv) A simple combinational circuit
- (2) Solve any two.

[2×7 14]

- a) Find out by using Quine Mc-Cluskey Minimization technique, $F(A,\,B,\,C,\,D) = \Sigma m(0,\,5,\,8,\,9,\,10,\,11,\,14,15).$
- b) Write a VHDL program for full Adder?
- c) Explain need of VHDL
- 23) Solve any two.

 $[2 \times 7 = 14]$

- a) Write a VHDL program for BCD to Excess-3 Code
- b) Write VHDL program for 2:4 Decoder
- c) Short in short 4 bit ALU

Q4) Solve any two.

SB-94 [2×7=14]

- a) Write a VHDL program for T Latch
- b) Write short note on DRAM/NVRAM
- c) Explain & convert SR to D flip flop
- Q5) Solve any two.

 $[2 \times 7 = 14]$

- a) What is FSM?
- b) Write a VHDL code for Mealy Machine
- c) Explain in detail PLA

Total No. of Pages: 3

*	
Seat	THE RESERVE THE STREET
No.	

T.Y. B.Tech. (E & TC) (Part - II) (Semester - IV) (CBCS)

Examination, January - 2023

PCC-ETC503: ELECTROMAGNETIC ENGINEERING

Sub. Code: 80808

Day and Date: Thursday, 19 - 01 - 2023

Total Marks: 70

Time: 10.30 a.m. to 1.00 p.m.

1)

Instructions:

All questions are Compulsory.

- 2) Figure to the right indicates full Marks.
- 3) Assume Suitable data if necessary.

Q1) Solve the all Questions (Rewrite the statement by correct option) [14]

- a) According to Biot-Savart's law, which parameter is inversely proportional to the differential magnetic field intensity (dH)?
 - i) current
 - ii) magnitude of differential length
 - iii) sine of angle between filament & line connecting differential length to point
 - iv) square of the distance from differential element to point
- b) Electromagnetic waves travelling in a medium having relative permeability $\mu r = 1.3$ and relative permittivity Er = 2.14. The speed of electromagnetic waves in medium must be
 - i) 1.8 × 108 ms-1

ii) $1.8 \times 104 \text{ ms}1$

iii) $1.8 \times 106 \text{ ms}-1$

iv) $1.8 \times 102 \text{ ms}-3.$

- c) The Cartesian system is also called as
 - i) Circular coordinate system

Rectangular coordinate system

iii) Spherical coordinate system

Space coordinate system

d)	Find the magnetic flux density when a point from a finite current length	
	element of current 0.5A and radius 100nm.	

i) (

ii) 0.5

iii) 1

iv) 2

e) Ampere law states that,

- i) Divergence of H is same as the flux
- ii) Curl of D is same as the current
- iii) Divergence of E is zero
- iv) Curl of H is same as the current density
- f) Apply divergence theorem for D=5r2/4 i in spherical coordinates between r=1 and r=2.

i) 80π

ii) 5π

iii) 75π

iv) 85π

g) Standing wave ratio is defined as the

- i) Ratio of voltage maxima to voltage minima
- ii) Ratio of current maxima to current minima
- iii) Product of voltage maxima and voltage minima
- iv) Product of current maxima and current minim

Q2) Solve any two

[14]

- a) Vectors are given as A=4ax+3 ay +2az B=2ax+3 ay +4az Find A.B & angle between A & B
- Derive the expression for Electric field intensity at a point due infinite sheet charge
- c) Explain Method of Image for line charge

Q3) Solve any two

a) Derive point form of Gauss law

- b) A current filament of 0.4 A in the az direction in free space is in a filament parallel to z axis & passing through the point (2,-4,0) find H at (0,1,0) if the filament lies in the interval – 3<z<3</p>
- c) State & prove Divergence theorem

Q4) Solve any two

[14]

a) Explain Magnetic scalar Potential

- b) State Ampere's circuital Law in integral & differential form
- c) Write a note on
 - i) Wavelength
 - ii) Velocity of propagation
 - iii) Group Velocity

Q5) Solve any two

[14]

a) State & Explain Biot Savart's Law

- Evaluate both sides of stoke's theorem theorem for field H= 6xy ax-3y2 ay and rectangular patch around the region, 2<x<5, -1 <y<1, z=0 positive direction of ds is az
- c) Write a note on
 - i) VSWR
 - ii) Characteristics Impedance
 - iii) Reflection Coefficient

xxx