No. S.Y. B.Tech. (Electronics & Telecommunication Engineering) (Semester - III) (CBCS) Examination, January - 2023 **ENGINEERING MATHEMATICS - III** Sub. Code: 73245 Total Marks: 70 Day and Date: Friday, 20 - 01 - 2023 Time: 10.30 a.m. to 1.00 p.m. All questions are compulsory. 1) Instructions: Use of non-programmable calculator is allowed. 2) Figures to the right indicate full marks. Q1) Choose the correct alternative from the following. (2Marks each) [14] The complementary function of $(D^3 - 3D^2 + 4) y = e^{3x}$ is i) $y = c_1 e^{-x} - (c_2 + c_3 x) e^{2x}$ ii) $y = c_1 e^{-x} + (c_2 - c_3 x) e^{2x}$ iv) $y = c_1 e^{-x} + (c_2 + c_3 x) e^{2x}$ If $\overline{a} = a_1 i + a_2 j + a_3 k$ then div \overline{a} is _ ii) 0 i) $2\overline{a}$ The curl of vector field $f(x, y, z) = x^2i + 2zj - yk$ is _____ i) -3jValue of b_n in a fourier series for the function f(x) = x in the interval $(0, 2\pi)$ is ii) -2/n 2π i) iv) None of these iii) $4\pi^2$ The Laplace transform of $e^{-2t} \cos 4t$ is ii) $\frac{s+2}{(s-2)^2 + 16}$ iv) $\frac{s+2}{(s+2)^2 + 16}$ $\frac{s-2}{(s-2)^2+16}$ $\frac{s-2}{(s+2)^2+16}$

Inverse Laplace transform of $\frac{1}{(s-1)^2-1}$ is _

et sinht

ii) e-sint

iii) e' cosht

P.T.O.

SB - 206

g) Let
$$X = \{a, b, c, d, e, f, g, h, i, j\}$$
 and $0 \quad 0.2 \quad 0.5 \quad 0.2 \quad 0 \quad 1 \quad 0$

 $A = \frac{0}{a} + \frac{0.2}{b} + \frac{0.5}{c} + \frac{0.2}{d} + \frac{0}{e} + \frac{1}{f} + \frac{0}{g} + \frac{0.5}{h} + \frac{1}{i} + \frac{0.1}{j} \text{ then } |A| \text{ is } \underline{\hspace{1cm}}$

i) 3.5

ii) 3.8

iii) 3.3

iv) 3.6

Q2) Attempt any two.

a) Solve $(D^3 - 3D^2 + 4D - 2)y = e^x + \cos 2x$.

[7]

- b) Find the constants a and b so that the surface $ax^2 byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at (1, -1, 2). [7]
- c) Find α cuts and strong α cuts of $A(x) = \frac{x}{x+1}$ and $B(x) = 1 \frac{x}{10}$, $X = \{0, 1, 2, 3, 4, 5\}$ for $\alpha = 0.6, 0.7$. [7]

Q3) Attempt any two.

a) Solve $(D^2 + D - 2) y = 1 + x$.

[7]

b) Show that the vector field

 $\overline{F} = (y^2 \cos x + z^3)i + (2y \sin x - 4)j + (3xz^2 + 2)k$

is irrotational and find its scalar potential.

[7]

c) If the fuzzy sets A and B are defined by A = $\left\{ \frac{0.4}{x_1} + \frac{0.2}{x_2} + \frac{0.5}{x_3} + \frac{0.8}{x_4} + \frac{1}{x_5} \right\}$

$$B = \left\{ \frac{0.2}{x_1} + \frac{0.3}{x_2} + \frac{0.6}{x_3} + \frac{0.1}{x_4} + \frac{0.1}{x_5} \right\}$$

Determine

- i) Ā
- ii) \bar{B}
- iii) A∪B
- iv) $\overline{A} \cap \overline{B}$
- v) $\overline{A \cap B}$
- vi) $\overline{A \cup B} \cap \overline{A}$

Q4) Attempt any two.

SB - 206

- a) Obtain the fourier series expansion of $f(x) = x^2$ in the interval (-1, 1).[7]
- b) Find the laplace transform of $\int_0^t \frac{e^{-u} \sin u}{u} du$. [7]
- c) Six fair coins are tossed simultaneously. If 192 such tosses are made find the expected number of tosses showing [7]
 - i) one & only one head
 - ii) no heads
 - iii) all heads

Q5) Attempt any two.

- a) Obtain half range cosine series for $f(x) = x x^2$ for $0 \le x \le 1$. [7]
- b) Find the inverse laplace transform by using Convolution theorem

$$\frac{1}{(s-2)(s+2)^2}$$
. [7]

- c) The life time of certain type of battery has mean life of 400 hours and a standard deviation of 50 hours. Assuming the distribution of life time to be normal, find [7]
 - The percentage of batteries which have life time of more than 350 hours.
 - ii) The percentage of batteries which have life time between 300 & 500 hours

[Given: For S.N.V.z area between z = 0 & z = 1 is 0.3413 and z = 0 & z = 2 is 0.4772]

6 6 6

0

- Draw and explain high frequency model for transistor. Derive expression for f_R consider short circuit load.
- Design single stage R-C coupled C_E amplifier Vcc = 12V, hfe = 150, AV = 60, hie = $2.2K'\Omega$, frequency range 20Hz to 20 kHz, S = 10 [8]

OR

Find Av, Ai, Ri, Ro, Avg, Aig for following parameter. Rg = $^{\sim}00\Omega$, $R_L = 2K\Omega$, hie = 1000 Ω , hre = 3×10⁻⁴, hoe = 3×10⁻⁶ \mho , hfe = 250. [8]

SB-152

Seat No.

Total No. of Pages: 4

S.Y.B.Tech.(ETC)(Part-II) (Semester- IIII) Examination, January - 2023

PCC- ETC-301: ELECTRONIC CIRCUIT DESIGN- I (CBCS)

Sub. Code: 73247

Day and Date: Wednesday, 25 - 01 - 2023

Total Marks:70

Time: 10.30 a.m. to 1.00 p.m.

Instructions: 1) All questions are compulsory.

- Figures to the right indicate full marks.
- Assume suitable data, if necessary.
- Use of standard datasheet is allowed.

[10] Q1) Choose one correct answer and rewrite the complete statement.

a) For the given circuit for a $20 \, \mathrm{V}_{\mathrm{peak}}$ sinusoidal input v_{i} , what is the value of v, at which the clipping begins?

ii) 0

iii) -5

iv) None of the above

b) Find the cut off frequency for an RC low pass filter of $R=200\Omega$ and $C = 0.01 \mu F$?

500KHz

100Hz

200KHz iii)

iv) 79.57KHz

0

c)	A sinusoidal voltage with a peak-to-peak value of 30 V is applied to an RC low-pass filter. If the reactance at the input frequency is zero, the output voltage is					
	i)	Zero	ii)	12.74 V(p-p)		
	iii)	18 V (p-p)	iv)	1 V(p-p)		
d)	PIV of BWR is					
	i)	Vm	ii)	2Vm		
	iii)	0.7	iv)	None of the above		
e)	In simple transistor shunt regulator if Zener voltage is 7Volt, VBE = 0.7Volt then output voltage (Vo)is Volt					
	i)	7.7	ii)	8		
	iii)	8.3	iv)	0		
f)	Which of the following is the best biasing method for transistor bias?					
	i)	Emitter bias	ii)	Voltage divider bias		
	iji)	Fixed bias	iv)	Collector feedback bias		
g)	There areh parameters of a transistor.					
	i)	Four	ii)	Two		
	iii)	Three	iv)	None of the above		
h)		a fixed bias circuit, the draince current?	n curren	t was 1 mA, what is the value of		
	i)	0 mA	ii)	1 mA		
	iii)	2 mA	iv)	3 mA		
i)	In CE arrangement, the value of input impedance is approximately equal to					
	i)	hie	ii)	hoe		
	iii)	hre	iv)	None of the above		
j)	If the value of collector current IC increases, then the value of VCE					
	i)	Remains the same	. ii)	Decreases		
	iii)	Increases	iv)	None of the above		

		S	B-152
()2)	Solv	ve the following (15 marks)	[7]
Q2)	a)	Design zener regulator with zener voltage Vz = 12V to a load for IL(max) = 150mA, Vin varies between 20 to 25V.	or which
		OR	
		Draw and explain the operation of Voltage Tripler.	[7]
	b)	Design FWR power supply using capacitor filter for fo	llowing
		specifications Vo = $15V$, Io = $70mA$, r = 2% .	[0]
()3)	Solv	ve the following (15 marks)	
·C-7	a)	Explain Half wave rectifier with neat diagram and waveform.	[7]
	b)	Design emitter follower regulator Vo = 4.4V, Io = 40 vin = 8-15V, (use SL100)	mA and [8]
		Derive gain equation for High pass filter also design high pass f cut-off frequency 5 KHz and draw the frequency response.	ilter with [8]
Q4)	Sol	lve the following (15 marks)	
	a)	Derive expression for lower 3dB frequency of CE amp considering coupling capacitor [Cc]. Calculate Cc for $R_1 = R_2 = 6.8 \text{ K}'\Omega$, hie = 4.5K'\Omega, hfe = 320, Rs = 400'\Omega.	lifier by 12 Κ΄Ω, [8]
	b)	Draw and explain hybrid equivalent circuit for CC configurations. OR	ration of [7]

Derive the expression for lower cut off frequency of R-C coupled amplifier considering square wave. [7]