Total No. of Pages: 3

Total Marks: 70

Seat No.

S.Y. B.Tech. (Electronics & Telecommunication Engineering) (Semester- III) (CBCS) Examination, March - 2023 **ENGINEERING MATHEMATICS - III**

Sub. Code: 73245

Day and Date: Thursday, 15 - 06 - 2023

Time: 02.30 p.m. to 05.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- Use of non-programmable calculator is allowed.

Q1) Choose the correct alternative from the following. (2 marks each) [14]

a) The complete solution of
$$(D^3 - 3D^2 + 3D - 1)$$
 y = 0 is

i)
$$y = (c_1 + c_2 x + c_3 x^2)e^x$$
 ii) $y = c_1 e^x + (c_2 + c_3 x)e^{-x}$ iii) $y = c_1 e^x + (c_2 + c_3 x)e^{-x}$ iv) $y = (c_1 + c_2 x)e^x + c_3 e^{-2x}$

ii)
$$y = c_1 e^x + (c_2 + c_2 x)e^{-x}$$

iii)
$$y = c_1 e^{-x} + (c_2 + c_2 x)e^{x}$$

iv)
$$y = (c_1 + c_2 x)e^x + c_3 e^{-2x}$$

Unit vector normal to the surface $xy^3z^2 = 4$ at (-1, 1, 2) is_

i)
$$\frac{1}{\sqrt{11}}(i+3j-k)$$

$$ii) \quad \frac{1}{\sqrt{11}}(i-3j-k)$$

iii)
$$\frac{1}{\sqrt{11}}(i-3j+k)$$

iv)
$$\frac{-1}{\sqrt{11}}(j+3j-k)$$

c) If
$$\left[\frac{0.1}{5} + \frac{0.7}{6} + \frac{0.9}{7}\right]$$
, $B = \left[\frac{0.1}{5} + \frac{0.9}{6} + \frac{1}{7}\right]$ then

i)
$$\overline{A \cup B} = \left[\frac{0.1}{5} + \frac{0.7}{6} + \frac{0.9}{7} \right]$$

ii)
$$\overline{A \cap B} = \left[\frac{0.9}{5} + \frac{0.3}{6} + \frac{0.1}{7} \right]$$

- (i) & (ii) both true
- iv) None of these

d)
$$L\{t^n f(t)\} =$$

i)
$$\frac{d^n}{ds^n} \Big[L \big\{ f(t) \big\} \Big]$$

ii)
$$\frac{d^{n+1}}{ds^{n+1}} \Big[\mathbb{L} \big\{ f(t) \big\} \Big]$$

iii)
$$(-1)^n \frac{d^n}{ds^n} \left[L\{f(t)\} \right]$$

iv) None of these

e) The particular integral of $(D^3 + D) y = \cos x$ is_____

$$y = \frac{-x\sin x}{2}$$

ii)
$$y = \frac{x \cos x}{2}$$

iii)
$$y = \frac{x \sin x}{2}$$

iv)
$$y = \frac{-x}{2}\cos x$$

f) The probability that a pen manufactured by a company will be defective is 0.1. If 12 such pens are manufactured, then the probability that exactly two will be defective.

yalue of a_0 in a fourier series for the function $f(x) = x^2$ in the interval $(0, 2\pi)$ is _____

i)
$$\frac{\pi^2}{3}$$

ii)
$$\frac{2\pi^2}{3}$$

iii)
$$\frac{4\pi^2}{3}$$

iv) None of these

Q2) Attempt any two.

a) Solve
$$(D^2 - 4D + 4)$$
 $y = 4(e^{2x} - \cos 2x)$

[7]

b) Find the directional derivative of $\phi = x^4 + y^4 + z^4$ at the point A(1, -2, 1) in the direction of AB where B is (2, 6, -1). In what direction from A is the directional derivative maximum? [7]

c) Find the fuzzy cardinality of the fuzzy set given by $A(x) = \frac{35-x}{15}$ on $X = \{20, 22, 24, 26, 28, 30\}$ [7]

Q3) Attempt any two.

a) Solve $(D^2 - 3D + 2)y = x^2e^{2x}$

[7]

- b) Prove that $\overline{F} = (x + 2y + az)i + (bx 3y z)j + (4x + cy + 2z)k$ is solenoidal & determine the constants a, b, c if \overline{F} is irrotational. [7]
- c) Consider the fuzzy sets defined by $A(x) = \frac{x}{x+2} \& B(x) = \frac{x}{x+5}$; $X \in \{0, 1, 2, 3, 4, 5\}$. Find degree of subsethood S(A, B) and S(B, A).

Q4) Attempt any two.

a) Find Fourier series expansion of f(x) = x in $(0, 2\pi)$.

[7]

b) Find Laplace transform of et t sin4t

[7]

 c) A discrete random variable has the probability density function given below. [7]

X	-2	-1	0	1	2	3
P(X=x)	0.2	k	0.1	2k	0.1	2k

Find

- i) K
- ii) P(X < 1)
- iii) $P(X \ge 1)$
- iv) P(-2 < X < 2)

Q5) Attempt any two.

- a) Find half range cosine series for $f(x) = (x 1)^2$ $0 \le x \le 1$. [7]
- b) Find inverse laplace transform of $\frac{1}{s^2(s+1)}$. [7]
- In the probability that an individual suffers a bad reaction from a certain injection is 0.001, determine the probability that out of 2000 individuals[7]
 - i) exactly 3
 - ii) more than two
 - iii) atmost two will suffer a bad reaction.

SE-165

Total No. of Pages: 3

Seat No.

S.Y. B.Tech. (E & TC) (Part - II) (CBCS) (Semester - IV) Examination, March - 2023 DIGITAL COMMUNICATION

	200			DIGITALCO	MIMINIM	AHON		
				Sub. Co	de: 7918	84		
)ay	and	Date	: Sat	urday, 24 - 06 - 2023			Total Marks: 70	
[im	e:10).30 a	.m. t	o 01.00 p.m.				
nstr	uctio	ns:	1)	All Questions are con	npulsory.			
		98	2)	Figures to the right is	ndicate full i	narks.		
01)	Atte	empt	follo	wing multiple choice	questions.		[14×1=14]	
	a)	OUT-OR		piased coins are toss	CONTROL OF THE PARTY OF THE PAR		bility of getting at	
				e head?				
		i)	1/2		A ii)	1/3		
		iii)	1/6	9	iv)	3/4		
	b)	P(A	ANB) is equal to :				
		i)	P(A	A).P(B A)	ii)	P(B).P(A B)	
		iii)	Bot	th (i) and (ii)	iv)	None of the	ese	
	c)	IfP	(E) =	0.37, then P(not E)	will be			
		i)	0.3	7	ii)	0.63		
		iii)	0.5	7	iv)	None of the	ese	
	d)	Info	ormat	tion is in the form of				
	8.1	i)	Ele	ctrical signal	ii)	Music signa	al	
		iii)	Bot	th (i) and (ii)	iv)	None of the	e above	
	e)	The	state	ement "MAN BITES	DOG" ha	S		
		i)	Zer	o information	ii)	Less inform	nation	
		iii)	Mo	re information	iv)	None of the	e above	
	f)	0000F0	11.6506000	is the digital modu	lation tech	nique in wh	ich the step size is	
		var	ied ac	ccording to the variat	tion in the	slope of the i	input.	
		i)	DM	ſ	ii)	PCM		
		iii)	AD	M	iv)	PAM		
		350						

- g) To avoid Alliasing error
 - i) Sampling frequency must be greater than frequency of input signal
 - Sampling frequency must be greater than twice of frequency of input signal
 - iii) Sampling frequency must be less than frequency of input signal
 - iv) Sampling frequency must be less than twice of frequency of input signal
- h) If sampling is not properly done then
 - i) Positive error occurs
- ii) Negative error occurs
- iii) Alliasing error occurs
- iv) None of the above
- i) The sub-processes involved in the PCM modulation in sequen order are:
 - i) Sampling, quantizing, encoding
 - ii) quantizing, encoding, sampling
 - iii) Quantizing, sampling, encoding
 - iv) None of the above
- j) NRZ in communication means
 - i) Non Release to Zero
 - ii) Non Return to Zero
 - iii) Non Real to Zero
 - iv) Non Reluctive to Zero
- k) Spread spectrum signals are used for
 - i) Ranging
 - ii) Determination of position
 - iii) Ranging and Determination of position
 - iv) None of the mentioned
- The technique that may be used to reduce the side band power is
 - i) MSK
 - ii) BPSK
 - iii) Gaussian minimum shift keying
 - iv) BFSK
- m) Matched filter is used to
 - i) Provide Maximum SNR
- ii) Reduce amplitude
- iii) Reduce Height
- iv) None of the above

- n) Eye Diagram will be corrupted by
 - i) Noise

- ii) Interference
- iii) Both (i) and (ii)
- iv) None of the above

Q2) Solve any two:

[2×7=14]

- Explain the functional description of digital communication system in detail.
- b) Explain Procedure of Shannon Fano Coding Technique.
- c) Describe Quantization process in detail.
- Q3) Solve any two:

[2×7=14]

- a) In a factory, four machines A₁, A₂, A₃ and A₄ produce 10%, 20%, 30% and 40% of the items, respectively. The percentage of defective items produced by them is 5%, 4%, 3% and 2% respectively. An item selected at random is found to be defective. What is the probability that it was produced by the machine A₂.
- b) Explain Entropy in detail.
- c) What are the drawbacks of delta modulation.
- Q4) Solve any two:

[2×7=14]

- a) Explain coding format of
 - i) Bipolar RZ
 - ii) Bipolar NRZ
 - iii) Unipolar NRZ
 - iv) Unipolar RZ
- b) Discuss the principle of operation of ASK Receiver.
- c) Draw the Eye pattern and indicate how ISI is measured from it.
- Q5) Solve any two:

[2×7=14]

- a) Explain the properties of line coding.
- b) Discuss QPSK in detail.
- c) Explain Matched Filter.

8000

Seat No. Total No. of Pages: 3

S.Y. (E&TC) (Semester-IV) (CBCS) Examination, March - 2023 ELECTRONIC CIRCUIT DESIGN-II

		Sub.	Code: 791	181
		e : Thursday, 15 - 06 - 20 a.m. to 1.00 p.m.	023	Total Marks: 70
Instruction	ons:	All questions are Figures to the rig		marks.
Q1) Atte	empt	following MCQs		[7×2=14]
a)	Ga	in of an amplifier usua	ally expressed	l in db because
t v	i)	It is a small unit		
	ii)	Calculations become	easy	
	iii)	Human ear response	is logarithmi	complia (E)
	iv)	Gain is reduced	A comme	
b)	Wh	at is meant by cascadi	ng?	
	i)	Process of joining tw	o amplifier s	tages using a coupling device.
	ii)	Process of extracting	two amplifie	r stages using a coupling device.
	iii)	Both (i) and (ii)		
	iv)	None of above		
c)		e lower and upper cu quencies	it off freque	ncies are also called
	i)	Sideband	ii)	Half-power
	iii)	Half-resonant	iv)	Resonant

- d) Types of negative voltage feedback_
 - i) Voltage-series & Shunt feedback
 - ii) Current-series & Shunt feedback
 - iii) Voltage-series & Current shunt feedback
 - iv) Current-series & Voltage shunt feedback
- e) Oscillators must use _____ feedback.
 - i) Positive

- ii) Negative
- iii) Both (i) & (ii)
- iv) None of the above
- f) In a wein bridge oscillator if C=0.047uF, Fo=1kHz, the value of
 - i) 1.38kΩ

ii) 2.38 kΩ

iii) 3.38kΩ

- iv) 4.38kΩ
- g) What is the dropout voltage in a three terminal IC regulator?
 - i) $|V_{in} \ge V_0| + 2V$
- ii) $|V_{in}| < |V_0| 2V$

iii) $|V_{in}| = |V_0|$

- iv) $|V_{in}| \le |V_0|$
- Q2) Attempt any two of the following.

[2×7=14]

- a) What is the need of cascading? Explain different types of coupling.
- b) Write note on feedback topology.
- Design class A Push-Pull Amplifier for following specifications: Po=500mW, loud speaker impedance=8Ω, Vcc=12V
- Q3) Attempt any two of the following.

[2×7-14]

- a) Design a two stage RC coupled amplifier to meet the following specifications. RL=3 Ω , RS=600 Ω , VO=9V(p-p), VCC=15V, Lower 3dB frequency (f)=50Hz. Use transistor BC147A.
- b) Design a two stage vtg series feedback amplifier with a overall gain of 100 and low 3dB frequency range is 20Hz to 20kHz. The output voltage swing should be 10V (p-p) with a load resistance of 5kΩ. Consider RS=200Ω. Use transistor data. IC(max)=100mA, PD(max)=300mV, VCE(max)=20 V, hfe=200.
- c) Write short note on crossover distortion.

Q4) Attempt any two of the following.

[2×7=14]

- a) For Wein Bridge oscillator, show that oscillating frequency is $fo=1/(2\pi RC)$ and minimum required gain is more than 3 to get sustained oscillations.
- b) Derive expression for
 - i) Time period (T)
 - ii) Minimum hfe for a table multivibrator.
- Write short note on Three terminal adjustable Positive voltage regulator (LM 317)
- Q5) Attempt any two of the following.

[2×7=14]

- a) Design RC Phase shift oscillator for following specifications. VCC=12V, f₀=1 kHz, hfe=200/300, hie=4.5 k, IC (max)=200mA, PD(max)=250mw,s=10.
- b) Draw a neat circuit diagram and explain the operation of Self Biased Bistable multivibrator.
- c) Write short note on fixed positive and negative Voltage regulator (78XX & 79XX)

[7]

Q5) Solve the following (15 marks):

a) Find Av, Ai, Ri, Ro, Avg, Aig for following parameter. Rg = 600Ω , R₁ = $1K\Omega$, hie = 1000Ω , hre = $3*10^4$, hoe = $3*10^6 \sigma$, hfe = 250. [8]

OR

- a) Draw and explain hybrid equivalent circuit for CB configuration of transistor.
- b) Derive stability factor for collector to base bias circuit.

(3) Solve Tile Enigering (18 marsh)

Seat	maki wa minis
No.	

Total No. of Pages: 4

S.Y. B.Tech. (ETC) (Part - II) (Semester - III) (CBCS) Examination, March - 2023 PCC-ETC-301: ELECTRONIC CIRCUIT DESIGN - I

Sub. Code: 73247

Day and Date : Saturday, 17 - 06 - 2023

Total Marks: 70

Time: 02.30 p.m. to 05.00 p.m.

Instructions: 1) All questions are compulsory.

- Figures to the right indicates full marks.
- Assume suitable data, if necessary.
- 4) Use of standard datasheet is allowed.

Q1) Choose one correct answer and rewrite the complete statement: [10]

i) What is the circuit in the given diagram is called

a) Clipper

b) Clamper

c) HWR

- d) FWR
- ii) In a Low-pass filter, if Cutoff frequency is = 5.5 KHz. Its passband is
 - a) 5.5KHz to ∞
- b) 0Hz
- c) 0Hz to 5.5KHz
- d) None of the above
- iii) Output of Rectifier is _____
 - a) AC

- b) DC
- c) Pulsating DC
- d) None of the above
- iv) Rectification Efficiency of HWR is ______ %
 - a) 40

b) 100

c) 21

d) None of the above

P.T.O.

[7]

[7]

v)	In short circuit protection circuit for Voltage regulator the additional
	transistor Q2 is connected to

- a) Divert the base current of series pass transistor
- b) Increase the base current of series pass transistor
- c) Improve the Regulation
- d) None of the above
- vi) In order to determine hee and hie parameters of a transistor _____ is a.c. short- circuited.
 - a) Input

- b) Output
- c) Input as well as output
- d) None of the above
- vii) Using standard transistor h parameter nomenclature, the voltage sain in CE arrangement is _____
 - a) $\frac{-h_{fe}}{Z_{in}\left(h_{oe} + \frac{1}{r_L}\right)}$
- b) $\frac{-h_{fe}}{Z_{out}(h_{oe}+1)}$

c) $\frac{-h_{fe}}{h_{oe} + h_{re}}$

- d) none of the above
- viii) Choose the incorrect option according to self bias circuit.
 - a) Voltage gain increases
 - b) Stability factor is independent of collector resistance
 - c) BJT can be used in either of the three configurations
 - d) Excellent stability in collector current is achieved
- ix) Which of the following relation is true about gate current?
 - a) IG = ID + IS
- b) ID = IG

c) IS = IG

- d) IG = 0
- x) Consider a CE circuit, where trans-conductance is $50 \text{m}\Omega$ -1, diffusion capacitance is 100 pF, transition capacitance is 3pF,. $I_B = 20 \mu A$. Given base emitter dynamic resistance, rbe = 1000Ω , input V_1 is $20*\sin(10_{7t})$. What is the short circuit Current gain?
 - a) 30

b) 35

c) 40

d) 100

Q2) Solve the following (15 marks):

- a) Design capacitor filter to supply $V_{dc} = 12V$, $I_{dc} = 80mA$ and r = 0.05. [7]
- b) Design series pass regulator $V_o = 13.6V$, $I_o = 50 \text{mA}$ and $V_{in} = 18-25V$ (use hfel = 40 and hfe2 = 110). [8]

OR

b) Draw and explain positive and negative damper with waveforms. [8]

Q3) Solve the following (15 marks):

- a) Explain Full wave rectifier (Centre Tap) with neat diagram and waveform.
 Derive expression for dc output current, dc output voltage, rms current, rms voltage, ripple factor, Rectification efficiency and Transformer Utilization factor.
- b) Draw and explain positive clipper circuits.

OR

b) Explain Pre-regulator and explain with suitable example.

Q4) Solve the following (15 marks):

a) Derive the expression for higher cut off frequency of R-C coupled amplifier considering square wave. [7]

OR

- a) Derive the expression of stability factor for voltage divider biasing circuit.
 [7]
- b) Derive expression for lower 3dB frequency of CE amplifier by considering coupling capacitor [Cc]. Calculate Cc for $R_1 = 10K\Omega$, $R_2 = 4.7K\Omega$, hie = 3.8K Ω , hfe = 100, Rs = 500 Ω . [8]

Total No. of Pages: 3

Seat	NEW THE PERSON
No.	

S.Y. (ETC) (Semester - IV) Examination, March - 2023 LINEAR INTEGRATED CIRCUITS

			Sub. Code	e: 791	82
			curday, 17 - 06 - 2023 o 01.30 p.m.		Total Marks: 70
Instructi		1)	Attempt all questions,		38
		2)	Use of non-programma	ble calcu	ulator is allowed.
		3)	Assume necessary data	if requi	red and highlight.
21) Sol	ve th	e fol	lowing MCQs:		$[2\times7=14]$
i)		V is		puts of	ideal op amp then the possible
	a)	4 V		b)	2 V
	c)	0 V	70	d)	40 V
ii)	Ope	en loc	p configuration is not	preferre	ed in op-amps because its
	a)	Ban	dwidth is too large	b)	Bandwidth is very small
	c)	Gai	n is too large	d)	All of the mentioned
iii)	Ag	raph	of the magnitude of the	gain ve	ersus frequency is called
	a)	Bre	ak frequency	b)	Frequency response plot
	c)	Free	quency stability plot	d)	Transient response plot
iv)	For	curre	nt mirror circuit		
	a)	I so	urce = I sink	b)	I source > I sink
	c)	I so	urce < I sink	d)	None of these
v)	Wh	ich ar	nong the following is a	nonline	ear application of op-amp?
	a)	V to	I converter	b)	Comparator
2011 1111	c)	Prec	eision rectifier	d)	Instrumentation amplifier

- a) $A_F=11$, $f_H=796.18$ Hz
- b) $A_F = 10, f_H = 796.18$ Hz
- c) $A_F = 2$, $f_H = 796.18$ Hz
- d) $A_F = 3$, $f_H = 796.18$ Hz
- vii) For narrow band reject filter the quality factor Q will be always
 - a) Greater than 10
- b) Less than 10

c) Infinite

d) Zero

Q2) Answer any Two:

 $[2 \times 7 = 14]$

- a) Draw and explain DIBO (Dual input balanced output) differential amplifier with DC analysis.
- b) Explain V to I convertor with floating and grounded load.
- c) Explain frequency response of OP-AMP.

Q3) Answer any Two:

 $[2 \times 7 = 14]$

- a) Define the terms:
 - i) Input offset voltage
 - ii) Input bias current
 - iii) PSRR
 - iv) CMRR
- b) Derive the expression for gain of non-inverting amplifier.
- c) With neat sketch explain precision half wave rectifier.

SE-43

Q4) Answer any Two:

 $[2 \times 7 = 14]$

- Design second order L.P.F. for cutoff frequency of 200 Hz. Draw circuit diagram. Assume C = 0.1 uF, Pass band Gain=2.
- b) With neat diagram explain Timer IC 555 as Astable multivibrator.
- c) Explain collpits oscillator using OP-AMP.

Q5) Answer any Two:

 $[2 \times 7 = 14]$

- a) Explain the application of IC AD620.
- b) With the neat circuit diagram explain Band Reject filter with its frequency response.
- c) Draw and explain transfer characteristics of PLL.

Total No. of Pages: 3

Seat No.

S.Y. B.Tech. (ETC) (Part - II) (CBCS) (Semester - IV) Examination, March - 2023

		DATAS	TRUCTUI	RES
		Sub. (Code: 791	85
Day ar	nd Date	e : Monday, 19 - 06 - 2023		Total Marks: 70
lime:	10.30	a.m. to 01.00 p.m.		
nstruc	tions:	1) All questions are co	ompusiory.	
		2) Figures to the right	indicate full i	marks.
		 Assume suitable da 	ata if necessar	y. 125
(1) S	olve th	e multiple-choice questi	ons.	[1 each]
i)		data structure in which lown as	inear seque	nce is maintained by pointers is
	a)	Array	b)	Stack
	c)	Linked list	d)	Pointer-based data structure
ii)		is a linear collect		ferential structures, called nodes,
	a)	Queue	b)	Linked list
	c)	Tree	d)	Stack
iii) Wł	nich of the following is n	ot a linear da	nta structure?
	a)	Stack	b)	Queue
	c)	Linked list	d)	Binary tree
iv	93	nich of the following da erations only on one end		permits insertion and deletion ture?
	a)	Linked list	b)	Array
	c)	Stack	d)	Queue
v)	Wh	nat is the time complexity	of inserting	at the end in dynamic arrays?
	a)	O(1)	b)	O(n)
	c)	O(log n)	d)	Either O(1) or O(n)

0

0

Po	ointer is a		
		s of an	instruction
			io rando
		n C lang	mage?
	1.50		int arr(2)={10, 20}
		466	
Th	e number of edges from the		
		100	HEATH S BOAT
		- 25	Depth
375		d)	Width
0.20		1000	
330		b)	Removing Elements
		PARTY.	None of the above
		for Pos	tfix to Infix evaluation?
a)	11, 29%	b)	Array
c)		d)	TREE
Wh	at is a hash table?		
a)	A structure that maps value	es to ke	ys
b)	A structure that maps keys	to valu	es
c)	A structure used for storag	e	
d)	A structure used to implem	ent stac	ck and queue
star inse pus	ting from A, The stack is perted in a queue. Then two elebed back on the stack. Now	opped ements	four items and each element is are deleted from the queue and
		h)	C
			E
The	number of elements in the		
a)	7	b)	14
c)	36	d)	49
	a) b) c) d) Ho a) c) The star inser pus pop a) c) The 7 v a)	a) variable that stores addres b) variable that stores addres c) keyword used to create va d) None of mentioned How can we initialize an array in a) int arr[2]=(10, 20) c) int arr[2] = {10, 20} The number of edges from the of the tree a) Height c) Length Pop Operation in stack is a) Adding Elements c) Traversing Which data structure is suitable a) QUEUE c) STACK What is a hash table? a) A structure that maps value b) A structure that maps keys c) A structure used for storag d) A structure used to implement the five items: A, B, C, D and E starting from A, The stack is p inserted in a queue. Then two elepushed back on the stack. Now popped item is a) B c) D The number of elements in the 7 vertices is a) 7	a) variable that stores address of an b) variable that stores address of oth c) keyword used to create variables d) None of mentioned How can we initialize an array in C lang a) int arr[2]=(10, 20) b) c) int arr[2] = {10, 20} d) The number of edges from the node to of the tree a) Height b) c) Length d) Pop Operation in stack is a) Adding Elements b) c) Traversing d) Which data structure is suitable for Pos a) QUEUE b) c) STACK d) What is a hash table? a) A structure that maps values to ke b) A structure that maps values to ke b) A structure used for storage d) A structure used to implement stace The five items: A, B, C, D and E are put starting from A, The stack is popped inserted in a queue. Then two elements pushed back on the stack. Now one iter popped item is a) B b) C) D d) The number of elements in the adjace 7 vertices is a) 7 b)

	xiv)	He	ap can be used as			
		a)	Priority queue	b)	Stack	
		c)	A decreasing order array	d)	Normal Array	
Q2)	Atte	mpt	any two questions.			[14]
	a)	Wh	at is time complexity and spa	ce con	plexity?	
	b)	Exp	olain abstract data type with a	n exam	ple.	
	c)	Wr	ite in detail insertion & deletion	on of n	odes of linked list.	
Q3)	Atte	mpt	any two questions.			[14]
	a)	Exp	olain two-way lists.			
	b)	Exp	olain Header linked list.			
	c)	Exp	olain Binary Search with exam	ple.		
Q4)	Atte	mpt	any two questions.			[14]
	a)	Exp	lain the different operations	elated	to stack.	
	b)	Wri	te an algorithm to evaluate po	stfix e	xpression using stack.	
	c)	Wri	te an algorithm to insert eleme	ent into	Queue.	
05)	Λ++α	mnt	any two questions			[14]
Q3)		255	any two questions.	rith over	mmla.	[14]
	a)		plain quick sort with method w	iui exa	impie.	
	b)		blain AVL tree with example.			
	c)	Wri	te Warshall's Algorithm.			
			තින <u>ි</u> න	3		

[14]

- a) Explain in detail DC or step voltage response of Series R-C circuit.
- b) Design a prototype band pass filter having cutoff frequencies of 3KHz and 11 KHz and nominal characteristic impedance of 500Ω .
- c) In the network of Fig., the switch is closed at t = 0 Obtain the expression for current i(t) for t > 0.

Seat No. SE-83 Total No. of Pages : 4

S.Y. B.Tech. (Electronics and Telecommunication Engineering) (CBCS) (Semester - III) Examination, March - 2023

NETWORK ANALYSIS

Sub. Code: 73248

Day and Date: Monday, 19 - 06 - 2023

Total Marks: 70

Time: 02.30 p.m. to 5.00 p.m.

Instructions: 1)

- All questions are compulsory.
- Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary

Q1) Choose one correct answer and rewrite the complete statement.

[14]

- If no two branches of the graph cross each other, then the graph is called?
 - a) directed graph
- b) undirected graph
- c) planar graph
- d) Non planar graph
-) Find current I flowing through 2Ω resistor

a) 8A

b) 6A

c) 7A

- d) 4A
- iii) For ZL = ZS*, the relation between XL and XS is?
 - a) XL = XS

- b) XL = 0
- c) XL = infinity
- d) XL = -XS

- iv) The poles of driving point impedance are those frequencies conditions corresponding to
 - a) short circuit
- b) open circuit
- c) voltage source
- d) resonance
- The relation between Z11 and Y parameters is?
 - Z11=Y21/Δy
- b) Z11=Y11/Δy
- c) $Z11 = Y12/\Delta y$
- d) $Z11 = Y22/\Delta y$
- vi) A network has 7 nodes and 5 independent loops. The number of branches in the network is
 - 13

b) 12

c) 11

- d) 10
- vii) A network contains only an independent current source and resistors. If value of all resistors are doubled, the value of the node voltages will
 - become half
- remain unchanged
- become double
- none of the above

Q2) Attempt any two.

[14]

a) Find an equivalent resistance between A and B in the network.

- Derive the equation for delta to star transformation of resistive network.
- Find current through 10Ω using Thevenin's theorem.

Q3) Attempt any two.

[14]

- a) Series RLC circuit having R=100Ω, L=100mH and C=10 nF. The applied voltage across circuit is 100V. Find
 - Resonant frequency (ω₀)
 - Quality Factor at resonance Qo
 - Two half-power frequencies ω_1 and ω_2 and bandwidth ($\Delta\omega$).
- State and explain Thevenin's theorem with example.
- Calculate current I and verify the reciprocity theorem for the network shown.

Q4) Attempt any Two.

[14]

a) Find Y-Parameters of given network.

- Determine ABCD parameters in terms of h-parameters.
- Derive the relation between decibel and neper.