Seat No.

S.E. (E & TC Engg.) (Semester - IV) Examination, November - 2019 DATA STRUCTURE

Sub. Code: 63468

Day and Date: Friday, 15 - 11 - 2019

Total Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

Instructions:

- 1) Attempt all qustions.
- 2) Figures to the right indicate full marks.

Q1) Solve any TWO:

 $[2 \times 9 = 18]$

- a) Write an algorithm for bubble sort and explain with an example.
- b) What is stack? Write an algorithm for push operation to save item on stack and explain it in brief.
- c) Write C code for
 - i) Removing element from queue.
 - ii) Inserting element into queue.

Q2) Solve any TWO:

[2×8=16]

- a) What is linked list? Explain different types of linked list.
- b) Define stack and explain its representation using linked list.
- c) Write the C program for PUSH and POP operation.

Q3) Solve any TWO:

 $[2 \times 8 = 16]$

- Explain term garbage collection also explain overflow and underflow situations.
- b) What is queue? Explain different types of queue.
- c) What is a multidimensional array? Explain the representation of two dimensional array in memory.

Q4) Solve any TWO:

 $[2 \times 8 = 16]$

- a) Explain traversing operation on a graph and its types.
- b) Explain binary tree with neat diagram and properties.
- c) Explain warshall's algorithm with suitable example.

Q5) Solve any TWO:

 $[2 \times 8 = 16]$

- Define AVL tree explain the insertion in the AVL tree with different rotations.
- b) Write a short note on counting number of binary tree.
- c) Explain insertion in m way search tree with proper example.

Q6) Solve any THREE:

 $[3 \times 6 = 18]$

- a) Represent the following algebraic expression in tree structure
 E = [a (b + c)]* [(d + e) / (f g + h)].
- b) Construct a binary tree from the given order.
 Postorder: HIDEBJFKGCA.

Inorder: HDIBEAFJCGK.

- c) What is hashing? Explain different hash functions.
- d) Consider graph G in the figure below, Suppose the nodes are stored in an array in a memory as follows X, Y, Z, S, T then

- i) Find indeg (Y) and outdeg (Y).
- ii) Find all simple paths from X to Z.
- iii) Find all simple paths from Y to Z.

Total No. of Pages: 2

S.E. (ETC) (Semester - IV) Examination, November - 2019 ELECTROMAGNETIC ENGINEERING

Sub. Code: 63469

Day and Date: Tuesday, 19 - 11 - 2019

Total Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

SECTION - I

Q1) Solve any two:

 $[2 \times 8 = 16]$

- State the Gauss law and its three applications.
- b) Evaluate
 - i) Find $\nabla \emptyset$ of a scalar function $\phi = x^2yz$.
 - ii) Find the gradient of a function $A = 2x^3 + y^3 + z^2$
- Four point's charges of 3 ηC each are placed at four corners of a square
 meter in side. Find the force acting on each charge.

Q2) Solve any two:

 $[2 \times 8 = 16]$

- a) Explain boundary conditions for dielectric dielectric interface.
- b) State and derive Diversion Theorem.
- c) Give the field $\overline{D} = 6r \sin\left(\frac{1}{2}\varnothing\right) \overline{a}_r + 1.5r \cos\left(\frac{1}{2}\varnothing\right) \overline{a}_{\phi} \ C/m^2$, evaluate both side of the divergence theorem for the region bounded by r=2, $0 \le \varnothing \le \pi$, $0 \le z \le 5$.

Q3) Solve any three:

[3×6=18]

- Transform vector to cylindrical coordinate form Cartesian coordinate system.
- b) Explain Method of Images.
- c) Write a note on Coulomb Law.

d) Transform the vector to cylindrical coordinates: $\overline{F} = 10\overline{a}_x - 8\overline{a}_y + 6\overline{a}_z$ at pint P(10, -8, 6)

SECTION - II

Q4) Solve any two.

[2×8=16]

- a) Derive the magnetic field intensity due to infinite filament line.
- b) The magnetic field intensity of linearly polarized uniform plane wave propagation in +y direction in seawater ($\varepsilon_r = 80$, $\mu_r = 1$, $\sigma = 4$ s/m) is $\overline{H} = 0.1 \sin \left[10^{10} \pi t \pi / 3 \right]$ A/m. Determine γ , β , α , η , λ and v_p .
- c) Explain the concept of vector magnetic potential.

Q5) Solve any two.

 $[2 \times 8 = 16]$

- a) Derive the Maxwell equation for static field.
- b) Derive the transmission Line equations.
- c) The parameter of a certain transmission line operating at 6×10^8 rad/s are L = 0.4 μ H/m, C = 40 pF/m, G = 80μ S/m and R = 20 Ω /m. Find propagation constant, attenuation and phase constant, wavelength and characteristic impedance.

Q6) Solve any three.

 $[3 \times 6 = 18]$

- a) Explain the smith chart.
- b) Write a note on Reflection coefficient and VSWR.
 - c) Prove that, $Z_0 = \sqrt{Z_{0c}Z_{sc}}$.
 - d) Calculate the value of the vector current density in rectangular coordinator at P(2, 3, 4) if $\overline{H} = x^2 z \overline{a}_y y^2 x \overline{a}_z$.

Total No. of Pages: 2

S.E. (ETC) (Part - II) (Semester - IV) (Revised)

Examination, November-2019

LINEAR INTEGRATED CIRCUITS

Sub. Code: 63467

Day and Date: Thursday, 14-11-2019

Total Marks: 100

Time: 2.30 p.m to 5.30 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

SECTION-I

Q1) Attempt any two.

 $[2 \times 8 = 16]$

- a) Derive expression for Slew Rate. State its significance.
- Draw and explain dual input balanced output differential amplifier with DC-Analysis.
- c) Draw and explain sample and hold circuit in details.

Q2) Attempt any two.

 $[2 \times 8 = 16]$

- a) Draw and explain functions of all building blocks of Op Amp.
- b) Explain summing, scaling and averaging amplifiers using Op amps.
- c) Discuss methods of frequency compensation. How it affects the bandwidth.

Q3) Write short notes on any three.

 $[3 \times 6 = 18]$

- a) Clipping and clamping circuits.
- b) Instrumentation Amplifier using three Op amp.

c) Log and Antilog Amplifiers.

d) IC CA3140.

SECTION-II

Q4) Attempt any two.

 $[2 \times 8 = 16]$

- a) With neat Diagram explain Timer IC 555.
- b) Draw and explain Narrow Band Reject Filter.
- c) Explain Hartley oscillator using Op amp.
- Q5) Attempt any two.

 $[2 \times 8 = 16]$

- a) Explain triangular wave generator with circuit diagram and waveform.
- b) Explain RC Wein Bridge oscillator in detail.
- c) Explain IC OP 177 Op amp in details.
- Q6) Write short notes on any three.

 $[3 \times 6 = 18]$

- a) All Pass Filter.
- b) IC 565 PLL.
- c) IC AD 620 Instrumentation Amplifier.
- d) Chebyshev Filter.

Seat No.

S.E. (Electronics & Telecommunication) (Part - II) (Semester - IV) Examination, November - 2019 ANALOG COMMUNICATION SYSTEMS

Sub. Code: 63470

Day and Date: Wednesday, 20 - 11 - 2019

Total Marks: 100

Time: 2.30 p.m. to 5.30 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Assume suitable data wherever necessary.

SECTION - I

Q1) Solve any three:

 $[3 \times 6 = 18]$

- a) Explain medium power AM generation.
- b) Draw and explain AM Envelope.
- Calculate modulation index if transmitter transmits 10kw power without modulation and 12kw after amplitude modulation.
- d) Explain third method related to SSB.

Q2) Solve any two:

 $[2\times8=16]$

- a) Explain concept of angle modulation with respect to Phase Modulation.
- b) How FM generation is DONE with indirect method.
- c) Compare AM with FM.

Q3) Solve any two:

 $[2\times8=16]$

- Define sensitivity, dynamic range, Selectivity, Fidility of super heterodyne receiver.
- Explain AM detection using simple and practical Diode Detector.
- c) Write note on image frequency and double spotting.

SECTION - II

Q4) Solve any two:

 $[2 \times 8 = 16]$

- a) Explain ratio detector.
- b) Explain foster seeley discriminator.
- c) Describe FM noise suppression.

Q5) Solve any two:

 $[2 \times 8 = 16]$

- a) Classify Noise signals.
- b) What is aliasing.
- c) Write briefly about noise figure, noise temperature, Noise BW, S/N ratio.

Q6) Write note on (any three):

 $[3 \times 6 = 18]$

- a) PPM modulator.
- b) Compare PAM with PCM.
- c) Sampling theorem.
- d) PWM Generation.

S.Y. B.Tech. (ETC) (Part - II) (Semester - III) (CBCS) (Revised) Examination, November - 2019 **ENGINEERING MATHEMATICS - III**

Sub. Code: 73245

Day and Date : Saturday, 23 - 11 - 2019

Total Marks: 70

Time: 10.00 a.m. to 12.30 p.m.

Attempt any three questions from each section. Instructions: 1)

Figures to the right indicate full marks. 2)

Use of non-programmable calculator is allowed. 3)

Assume suitable data, if necessary. 4)

Q1) Solve the following differential equations

a)
$$(D^3 - 7D - 6)y = e^{2x}(1+x)$$

[6]

b)
$$(D^4 - 16)y = 2\cos^2 x$$

[6]

Find the directional derivative of $\phi = x^2 - y^2 + 2z^2$ at the point p(1,2,3) in Q2) a) the direction of the line PQ where Q is the point (5,0,4)[6]

Show that the vector $\overline{f} = (x+2y+az)i+(bx-3y-z)j+(4x+cy+2z)k$ b) is solenoidal and determine the constants a, b, c if \overline{f} is irraotational [5]

Q3) a) If
$$s_1 = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.08}{60} + \frac{1}{80} + \frac{1}{100} \right\}$$
 and

 $s_2 = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.60}{40} + \frac{0.04}{60} + \frac{0.95}{80} + \frac{1}{100} \right\}$ then find following fuzzy

sets

[6]

$$i) \quad (s_1 \cup s_2)(x)$$

P. T. O.

0

b) Find the degree of subsethood s(A,B) and s(B,A) for the fuzzy sets [5]

$$A(x) = 1 - \frac{x}{10}, \quad x \in \{0, 1, 2, 3, \dots 10\}$$

$$B(x) = \frac{x}{x+2}, \quad x \in \{0, 1, 2, 3, \dots 10\}$$

Q4) Attempt any two

a)
$$x^3 \frac{d^2 y}{dx^2} + 3x^2 \frac{dy}{dx} + xy = \sin(\log x)$$
 [6]

b) Prove that
$$\nabla \cdot \left[r \nabla \left(\frac{1}{r^3} \right) \right] = \frac{3}{r^4}$$
 [6]

c) Find
$$\alpha$$
-cuts and strong α -cuts of set B [6]

$$B = \left\{ \frac{0.2}{1} + \frac{0}{2} + \frac{0.65}{3} + \frac{0.7}{4} + \frac{0.35}{5} \right\}$$
 for $\alpha = 0.2$, 0.4, 0.6, 0.8

SECTION - II

25) Solve the following

- a) Obtain the Fourier series for $f(x) = |x|, -\pi \le x < \pi$
- b) Obtain half range cosine series for $f(x) = x x^2$ for $0 \le x \le 1$ [6]

26) Solve the following.

- a) Find the Laplace transform of $\frac{\cosh 2t \cdot \sin 2t}{t}$ [6]
- b) Evaluate using Laplace transform $\int_{0}^{\infty} e^{-4t} \sin^{3} t . dt$ [5]

- Q7) Solve the following.
 - a) Six fair coins are tossed simultaneously. If 192 such tosses are made find the expected number of tosses showing [6]
 - i) one and only one heads
 - ii) no heads
 - iii) all heads
 - b) A firm produces articles of which 0.1 percent are defective. It packs them in cases each containing 500 articles. If a whole-saler purchases 100 such cases, how many cases can be expected to be free from defectives, how many can be expected to have one defective? [5]

Q8) Solve any two of the following.

a) Find half range sine series for $f(x) = x(\pi - x)$ in $(0, \pi)$. Deduce that

$$\frac{\pi^2}{32} = \frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots$$
 [6]

b) Find the inverse Laplace transform of
$$\frac{5s^2 - 15s - 11}{(s+1)(s-2)^2}$$
 [6]

- The lifetime of certain type of battery has mean life of 400 hrs. And a standard deviation is 50 hrs. Assuming the distribution of lifetime to be normal, find
 - the percentage of batteries which have lifetime of more than 350 hrs.
 - The percentage of batteries which have lifetime between 300 and 500 hrs.

(Given S.N. V.Z. are between z=0 and z=1 is 0.3413, between z=0 and z=2 is 0.4772)

Total No. of Pages :3

SE (ETC) (Part-II) (Semester - IV) Examination, November - 2019 ANALOG CIRCUITS-II

Sub. Code: 63466

Day and Date: Wednesday, 13-11-2019

Total Marks:100

Time: 2.30 p.m.to 5.30 p.m.

- Instructions: 1) All questions are compulsory
 - Figures to the right indicate full marks 2)
 - Assume suitable data wherever necessary

SECTION - A

Q1) attempt any two (8Marks Each)

- What is the need of cascading? Explain different types of coupling
- b) Design two stage direct amplifier with transistor specification O1 and Q_2 .hfe=100. $1_{C(max)}$ =100mA. $V_{CE(max)}$ =30V, $V_{o(p-p)}$ =5 V, R_1 = 5k Ω V_{CC} =20
- Design a two stage Rc coupled amplifier to meet the following specifications Rs = 300Ω . RL = $5k \Omega$, frequency range is 50 Hz to 100KHz, Voltage Gain per stage > 60 and supply voltage = 12 V

Q2) attempt any two (8Marks Each)

- a) Explain working of class B push pull amplifier with neat diagram. Also explain cross over distortion
- b) Design class AB push pull Amplifier for following specifications: Po=300mW. loud speaker impedance = 10Ω , Vcc = 15 V
- Design two stage voltage series feedback amplifier with overall gain at 200 and cover 3db frequency not more than 10Hz the output should be of $10V_{p-p}$ consider Rs = 300Ω

P.T.O.

Q3) Write note on any three (6Marks Each)

- a) Need of Power Amplifiers
- Advantages of negative feedback.
- Class AB push pull amplifier.
- Darlington pair

SECTION - B

Q4) Attempt any two (8Marks Each)

- With neat circuit diagram explain design steps of RC Phase oscillator and derive the expression for frequency of oscillation for RC phase shift oscillator.
- b) Design Hartley's Oscillator with following data Vo=6V (p-p), Fo=2MHz S=10 transistor Data, PD=0.2W, VCE(max)=40V, hfe=100, hie= $2.7k\Omega$. IC(max.) = 0.1A.
- c) Design Colpit's oscillator for 11 MHz frequency and giving 6V(p-p) output, Use transistor BC 147A with hfe=270, hie= $2.7k\Omega$, IC (max) = 100mA, VCE(max) = 45V, VBE(active) = 0.6V.

Q5) Attempt any two (8marks Each)

- a) Design astable multivibrator with following data, Frequency=500Hz Vo=12V, hfe(min) = 50. VBE(sat.) = VCE(sat.) = 0.3V, IC(sat.) = 6mA.
- With neat circuit diagram and waveforms explain operation of Monostable Multivibrator.
- c) Design schmitt trigger circuit with given data VCC=12V, LTP=2.5V, UTP=4V, IC(sat)=5.1mA. hfe=40, VCE(sat,)=0.2V, VBE(sat.)=0.7V.

Q6) Attempt any three (6Marks Each)

- a) Crystal Oscillator.
- b) LM 3524 (SMPS).
- c) Design steps of power supply using LM317.
- d) Voltage regulators 78XX, 79XX

8 8 8

Seat No.

S.Y.B.Tech (E&Tc.) (Part-I) (Semester - III) (CBCS)

		Examination, November - 2019					
	A	NALOG COMMUNICATION AT B.TECH					
		Sub. Code: 73246					
A STATE OF THE STA		: Tuesday, 26 - 11 - 2019 Total Marks : 70					
Time: 1	0.00 a	.m. to 12.30 p.m.					
Instruction	ons:	1) All questions are compulsory.					
		2) Figures to the right indicate full marks.					
	-	following Multiple choice questions. [14×1=14]					
a)	7,57	pes of analog pulse modulation systems are					
	i)	Pulse amplitude modulation					
	ii)	Pulse width modulation					
	iii)	Frequency modulation					
	iv)	Both (i) and (ii)					
b)	Amplitude limiter in FM receivers are used to						
	i)	Remove amplitude variations due to noise					
	ii)	Filteration					
	iii)	Demodulation					
	iv)	Amplification					
c)	In Frequency Modulation-						
	i)	Amplitude of the carrier remains same					
	ii)	Frequency of the carrier varies in accordance with the modulating signal					
	iii)	The number of side bands are infinite					
	iv)	All of the above					
d)		hase modulation, theof carrier is varied according to the ngth of the signal.					
	i)	Amplitude ii) Frequency					
	iii)	Phase iv) None of the above					
	1165	LIBRARY P.T.O.					

* KOLHAPUR*

				47						
e)		near modulation or under plitude is	under-modulation (amplitude) occurs when signs carrier amplitude.							
	i)	Equal to	ii)	Greater than						
	iii)	Less than	iv)	None of the above						
f)	The	The AM spectrum consists of								
	i)	Carrier frequency								
	ii)									
	iii)									
	iv)	All of the above	ell)	146.01 or max 00.01 (april 7						
g)	If modulation is 50% then signal amplitude isc amplitude.									
	i)	Equal to	ii)	Greater than						
	iii)	Less than	iv)	None of the above						
h)	Ali	Aliasing refers to								
	i)	Sampling of signals less than at Nyquist rate								
	ii)									
	iii)									
	iv)	None of the above								
i)		The modulation technique that uses the minimum channel bandwidt and transmitted power is-								
	i)	FM	ii)	DSB-SC						
	iii)	DSB-FC	iv)	SSB-SC						
j)	Dra	Drawbacks of Tuned Radio Receiver are								
	i)									
	ii)	Selectivity is poor								
	iii)) Bandwidth of the TRF receiver varies with incoming frequency								
	iv)	v) All of the above								
k)	Noi	Noise is added to a signal								
	i)	In the channel	ii)	At receiving antenna						
	iii)	At transmitting antenna	iv)	During regeneration of information						
1)	The	carrier is suppressed in	1	100 Due 100						
	i)	Mixer	ii)	Frequency multiplier						
	iii)	Transducer	iv)	Balance modulator						

						DC 037		
	m)	The	eoretical bandw	idth of FM is_				
		i)	2fm	ii)	4fm			
		iii)	Infinite ∞	iv)	Fm+fc			
	n)	The ideal modulation index(m) of AM is-						
		i)	m=0	ii)	m>1			
		iii)	m<1	iv)	m=1			
Q2)	Sol	ve Ar	ny two			[2×7=14]		
	a)	Explain need of modulation in detail.						
	b)	Exp	olain Trapezoida	l patterns for A	M modulation in	dex calculations		
	c)	Exp	olain filter metho	od of SSB gener	ration.			
Q3)	Sol	ve Ar	ny two			[2×7=14]		
	a)	Draw and explain frequency spectrum of FM with help of Bessel's Function.						
	b)	A sisusoidal carrier signal has amplitude of 6 volts and frequency 30 khz. It is amplitude modulated by sisusoidal voltage of amplitude 3 volts and frequency 2 khz. Find modulation index,% M, frequency of sideband components with its amplitudes, bandwidth. Draw frequency spectrum of AM.						
	c)	Dra	w and explain v	vorking of diod	e detector with w	vaveforms.		
Q4)	Sol	ve Ar	ny Two			[2×7=14]		
	a)							
	b)	Draw & explain Negative peak clipping & diagonal clipping with waveforms.						
	c)	Exp	olain in PWM ar	d PPM generat	ion with wavefor	rms.		
Q5)	Sol	ve Ar	ıy Two			[2×7=14]		
	a) State & explain Sampling theorem with occurrence of aliasing error.							
	b)							
	c)		olain signal to nperature.	noise ratio, 1	Noise Factor, n	oise Figure, Noise		

Seat No.

S.E. (Electronics and Telecommunications) (Part - II) (Semester - III) Examination, November - 2019

ENGINEERING MATHEMATICS - III

Sub. Code: 63460

Day and Date: Saturday, 23 - 11 - 2019

Total Marks: 100

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of non-programmable calculator is allowed.

SECTION - I

Q1) Attempt any three.

[18]

- a) Solve $(D^3 1)y = (e^x + 1)^2$
- b) Solve $(D^3 D^2 6D)y = (x^2 + 1)$
- c) Solve $(x^2D^2 4xD + 6)y = x$
- d) The differential equation of a circuit is $R \frac{dq}{dt} + \frac{q}{c} = 40e^{-3t} + 20e^{-6t}$. Given that R = 20 ohms and C = 0.01 farad. Initially if q = 0 when t = 0 then show that minimum charge on the capacitor is 0.25 coulombs.

Q2) Attempt any two.

[16]

a) Obtain fourier series for a function $f(x) = \frac{1}{2}(\pi - x)$ in interval $(0, 2\pi)$.

Also deduce that $\frac{\pi}{4} = \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots\right)$.

b) Obtain fourier series for a function $f(x) = x^2$ in internal (-l, l) and hance

deduce the resent $\frac{\pi^2}{1^2} = \left(\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots\right)$

c) Find a half range fourier sine series for f(x) = 0 in $0 \le x \le \pi$.

P. T. O.

[16]

- a) Find the fourier transform of $f(x) = (e^{-x^2/2})$ in $-\infty < x < \infty$.
- b) Find fourier sine and cosine transforms of $f(x) = \sin x$, $0 \le x \le a$ = 0, $x \ge a$
- c) Find inverse fourier cosine transform of $F_c(\lambda) = \frac{\sin(a\lambda)}{\lambda}$.

SECTION - II

24) Attempt any three.

[18]

- a) Find Laplace transforms of $\frac{1}{t} [\cos(at) \cos(bt)]$.
- b) Find Laplace transforms of $\int_0^t e^{-3t} \sin^3 t \, dt$.
- c) Find L⁻¹ $\left[\frac{(s+29)}{(s+4)(s^2+9)} \right]$.
- d) Use transform method to solve $(D^2 + 2D + 1) y = (te^{-t})$ with y(0) = 1 and y'(0) = -2.

25) Attempt any two.

116

- a) i) Find the directional derivative of $\Phi = (xy^2 + yz^3)$ at the point (1, -1, 1) along the vector (i + 2j + 2k)
 - ii) Find the angle between the normals to the surfaces $(x^2y+z-3)=0$ and $(x \log z y^2 + 4) = 0$ at the point of intersection p(-1, 2, 1).
- b) Prove that $\vec{F} = (x+2y+9z)i+(bx-3y-z)j+(4x+cy+2z)k$ is solenoidal and determine constants a, b, c if \vec{F} is irrotational.
- c) Prove that $\nabla^2 \left[\nabla \cdot \left(\frac{\vec{r}}{r^4} \right) \right] = \left(\frac{-12}{r^6} \right)$

SC - 414

Q6) Attempt any two.

- a) Find Z transform of $f(k) = \left(\frac{2}{3}\right)^{|k|}$ for all k.
- b) Find Z transform of $f(k) = ke^{-k}\sin(4k)$ for $k \ge 0$.
- c) Find the inverse Z transform of $f(z) = \frac{1}{(z-2)(z-3)}$; |z| < 2.

x x x

SC-417

Seat No. Total No. of Pages: 3

S.E. (Electronics and Telecom.) (Part - II) (Semester - III)

Examination, November - 2019 ANALOG CIRCUITS - I

Sub. Code: 63461

Day and Date: Tuesday, 26 - 11 - 2019

Total Marks: 100

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

1) All questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Use of non programmable calculator is allowed.
- 4) Use of standard data sheet is allowed.
- 5) Assume suitable data if necessary and highlight it.

Q1) Solve any two:

[16]

- a) Give detail analysis of Low pass RC circuit for ramp input signal.
- b) Design shunt clipper for Vin = 10V sine wave and clipping level 2.2V. Also draw input and output waveforms.
- With neat circuit diagram and waveforms explain the operation of full wave voltage doubler.

Q2) Solve any Two:

[16]

- With neat circuit diagram and wavefarms explain operation of bridge wave rectifier without and with capacitive filter.
- b) Derive an expression for HWR following parameter.
 - i) Vdc
 - ii) Vrms
 - iii)
 - iv) η
- c) Desrign full wave rectifier with capacitive filter for V_{dc} = 12V, I_{dc} = 100 mA, r = 3%.

P.T.O.

SC-417

[18]

Q3) Solve any two.

 Design zener shunt regulator which provide output voltage of 5V and output curent 50 mA for Vin = 10 to 15 V.

- b) Design emitter follower regulator with $V_o = 9V I_o = 100 \text{ mA}$, Vin = 15 to 30V
- Design series pass regulator with V_o = 10V, I_o = 50mA, Vin = 15 to 30 V.
 Use controller transistor = SL100
 Use error detector transistor = BC107

Q4) Solve any Two:

[16]

- a) Draw and explain hybrid equivalent circuit for CE configuration of transistor.
- b) Derive general expression for
 - i) Input Impedance
 - ii) Voltage gain and current gain in terms of h parameters and the load.
- c) Derive expression for lower 3 dB frequency due to Cc. Calculate size of Cc to provide 3 dB point of 100Hz when Rc = $1k\Omega$, hfe = 50, hie = $1k\Omega$, Rs = 600Ω , R₁ || R₂ = $1k\Omega$.

Q5) Solve any Two:

[16]

- a) Draw and explain following terms w.r.t. hybrid II model of a transistor.
 - i) Hybrid capacitance
 - ii) Base spreading resistance
 - iii) Transconductance
- Derive the expression for sag in term of lower cutoff frequency of R.C. coupled amplifier considering square wave.
- c) Design single stage RC coupled CE amplifier for given data Vcc = 9 V, S = 10, Av = 80, f = 20Hz to 20 KHz, Transistor Data: hfe = 40, $hie = 1k\Omega$.

Q6) Solve any Three.

[18]

- a) Explain with diagram working of Depletion type MOSFET.
- b) Explain with diagram fixed bais for JFET.
- c) High frequency response to square wave.
- d) For silicon transistor hfe = 50, h_{ie} = 1k Ω , f_{T} = 300 MHz, $C_{b^{3}c}$ = 4 pf, Ic = 1.5 mA, T = 22°C.

Calculate

- i) gm
- ii) r_b, e
- iii) r_{bb},

6 6 6