Total No. of Pages: 2

S.E. (Electronics and Telecommunication) (Semester-IV) Examination, May - 2018

ANALOG CIRCUITS - II

Sub. Code: 63466

Day and Date: Friday, 04 - 05 - 2018

Total Marks: 100

Time: 10.00 a.m. to 01.00 p.m.

Instructions:

- All questions are compulsory.
- Assume suitable dada if required.
- 3) Figure to right indicates full marks.

Q1) Attempt any three questions.

[18]

- Derive the parameter equations such as Ri. Ro, Av and Ai for multistage RC coupled amplifier.
- b) Explain operation of class AB push pull amplifier?
- c) What is harmonic distortion? Explain three-point method of calculating harmonic distortion of power amplifier.
- d) What is feedback? With the help of expressions explain advantages of negative feedback.

Q2) Attempt any two questions.

[16]

- a) Design a two stage direct coupled amplifier for $R_L = 5 \text{ k}\Omega$, $V_{cc} = 10 \text{ V}$, $R_s = 200\Omega$ and frequency of operation = 7 Hz. Provide per stage gain greater than 11.
- b) Design class AB push pull amplifier for following specifications $P_0 = 600$ mW, Loud speaker impedance = 6Ω , Vcc = 15V.
- c) Design current series negative amplifier for following specifications, $V_{cc} = 12 \text{ V}$, Av = 25, S = 9.

Q3) Attempt any two questions.

[16]

- a) Design a two stage amplifier with per stage gain greater than 70 and lower 3dB frequency not more than 10 Hz. The output should be of 8V(p-p), Consider $R_s = 300\Omega$. $V_{cc} = 12$ V, S = 9.
- b) Design complimentary symmetry power amplifier to deliver a power of 2.2w to a load of 8Ω . The lower 3dB cut-off frequency is 60 Hz.
- c) Derive the expression for Rif, Rof, Avf and Aif for current series negative feedback.

Q4) Attempt any two.

[16]

- a) Design Hartely's oscillator for following data. $F=10KHz \ V_{o(p-p)}=10 \ V \ Vcc=20 \ V \ P_{D \text{ (max)}}=1W$ $V_{CE}=45V_{\text{lc (max)}}=1 \ A \ h_{\text{fc}}=200h_{\text{lc}}=4.5 \ k.$
- Derive the expression for frequency of oscillation for Wein bridge oscillator.
- Design Wein bridge oscillator for following data F = 10 KHz $V_{\text{o (p-p)}} = 10 \text{ V Vcc} = 20 \text{ V P}_{D \text{ (max)}} = 1 \text{ W V}_{CE} = 45 \text{ V}_{\text{lc (max)}} = 1 \text{ A h}_{\text{fe}} = 200 \text{ h}_{\text{ic}} = 4.5 \text{ k}.$

Q5) Attempt any two.

[16]

- a) Derive expression for the time duration of a stable multivibrator.
- b) Design the Schmitt trigger by using transistor. Assume following data : UTP = 2 V LTP = 1 V Vcc = 10 V $_{lesat}$ = 5 mA V_{BEsat} = 0.7 V h_{fe} = V_{CEsat} = 0.25 V
- c) Design fixed bias bistable multivibrator. Using following $h_{fe} = 100$, 1Csat = 10 mA, $= V_{BFsat} = 0.7 \text{ V}$, $V_{CEsat} = 0.3 \text{ V}$, Vec = 12 V, $V_{BB} = -3 \text{ V}$, OF = 2.

Q6) Write a short note any three.

- a) RC Phase shift oscillator
- b) Monostable multivibrator
- c) IC 723
- d) LM 317 (Voltage Regulator)

Seat No.

S.E. (ETC) (Part - II) (Semester - IV) Examination, May - 2018 LINEAR INTEGRATED CIRCUITS (Revised)

Sub. Code: 63467

Day and Date: Monday, 07 - 05 - 2018

Total Marks: 100

Time: 10.00 a.m. to 01.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to right indicate full marks.

SECTION - I

Q1) Attempt any two.

 $[2\times8=16]$

- a) Draw and explain dual input, balanced output differential amplifier with DC analysis.
- b) Explain ideal characteristics of op-amp.
- c) Explain two circuits used for level shifting.

Q2) Attempt any two.

 $[2\times8=16]$

- a) Derive Equation for gain, input resistance output resistance for closed loop inverting amplifier.
- b) Draw and explain closed loop differential amplifier using two op-amps.
- c) Discuss the frequency response for compensated and uncompensated op-amp.

Q3) Attempt any two.

 $[2\times 9=18]$

- a) Draw the circuit of V I converter if the load is
 - i) Floating
 - ii) Grounded
- b) Draw and explain positive and negative peak detector using op-amp with waveforms.
- c) Draw and explain full wave rectifier circuit using op-amp with waveforms.

GEOFEA

LIBRARY

OLHAPUR

SECTION - II

Q4) Attempt any two.

 $[2 \times 8 = 16]$

- a) Draw and explain working principle of all pass filter and derive expression for gain and phase shift between input and output.
- b) Draw and explain Narrow Band-Reject filter & design it for $f_N = 60$ Hz.
- c) Design a second order HPF for cut off frequency of 1KHz. Draw a circuit diagram.

Q5) Attempt any two.

 $[2\times8=16]$

- a) Draw neat circuit diagram of RC phase shift oscillator and derive equation for frequency of oscillations.
- Draw and explain square wave generator using op-amp and derive equation for frequency of oscillations.
- c) Draw and explain the circuit diagram of Monostable multivibrator using op-amp and derive expression for pulse width.

Q6) Attempt any two.

 $[2 \times 9 = 18]$

- a) Define the terms
 - i) lock range
 - ii) capture range and
 - iii) pull in time
- b) Draw and explain the circuit diagram of Astable multivibrator using IC 555 and design Astable multivibrator using IC 555 with frequency 2kHz and duty cycle of 75%.
- Draw and explain the circuit diagram of Monostable multivibrator using IC 555 amd derive expression for pulse width.

Seat No.

S.E. (Electronics & Telecommunication) (Part - II) (Semester - IV) Examination, May - 2018 ELECTROMAGNETIC ENGINEERING

Sub. Code: 63469

Day and Date : Monday, 14 - 05 - 2018

Total Marks: 100

Time: 10.00 a.m. to 01.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- Assume suitable data if necessary.

Q1) Solve any two:

[16]

- a) Point charge of 120 nc are located at A(0, 0, 1) and B(0, 0, -1) in free space
 - i) Find E at (0.5, 0, 0)
 - ii) What single charge at the origin would provide the identical field strength.
- b) Transform cartesian coordinate system to spherical coordinate system.
- c) Given two charge distributions in free space: 0.2nc/m on the line z = 1, y = 3 and a point charge of 0.5nc at the origin. Find \overline{E} at point (2, 3, 4).

Q2) Solve any two:

[16]

- a) State and prove electric field intensity due to infinite sheet charge.
- b) A point charge 25nc is located in free space at p(2, -3, 5) and a perfectly conducting plane is at Z = 2 find.
 - i) V at (3, 2, 4)
 - ii) \bar{E} at (3, 2, 4)
 - iii) ρ_s at (3, 2, 2)
- c) If V = x y + xy + z (volts) find \overline{E} at (1, 2, 4) and the electrostatic energy stored in a cube of side 2m centered at origin.

Q3) Solve any three:

[18]

- a) Explain applications of Gauss's law.
- b) Write short note on boundary condition for dielectric dielectric interface.
- c) Explain method of images.
- Derive the equation for workdone in moving a point charge. Also explain conservative field.

Q4) Attempt any two of the following:

 $[2\times8=16]$

- a) Derive Magnetic field intensity on the axis of circular loop.
- b) Explain the concept of vector magnetic potential.
- c) Each of the three co-ordinate axis carries a filamentary current of 1A in \overline{ax} , \overline{ay} & \overline{az} direction. Find \overline{H} at (2, 3, 4).

Q5) Attempt any two of the following:

 $[2 \times 8 = 16]$

- a) Derive maxwell's equations for time varying fields.
- b) For the space show that intrinsic impedance, $\eta = 120\pi$.
- c) Calculate the intrinsic impedance η , the propagation constant γ , velocity v & skin depth for the given medium. Also check whether the medium is good conductor or not for which $\sigma = 58 \text{Ms/m}$, $\mu_r = 1$ at frequency f = 100 MHz.

Q6) Attempt any two of the following:

 $[2\times 9=18]$

- a) Explain smith chart and its applications.
- b) The characteristic impedance of a certain line is 710 < 16° when the frequency is 1KHz. At this frequency the attenuation 0.01 neper/Km & the phase function is 0.035 radians per km. Calculate the resistance, the leakage, the inductance & the capacitance per Km & velocity of propogation.
- c) A lossless transmission line of 50Ω is terminated in $25+j50\Omega$. Find using smith chart,
 - i) VSWR
 - ii) Reflection coefficient
 - iii) Impedance at 0.3λ from load.

Total No. of Pages: 2

S.E.(Electronics and Telecommunication) (Part-II) (Semester - IV)

Examination, May - 2018

DATA STRUCTURE (New)

Sub. Code: 63468

Day and Date: Friday, 11 - 05 - 2018

Total Marks: 100

Time: 10.00 a.m. to 01.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figure to the right indicate full marks.

SECTION - I

Q1) Solve any TWO from THREE

[18]

- a) What is stack? Write algorithm for push operation to save item on stack and explain it in brief.
- b) Write 'C' code for
 - i) Removing element from Queue
 - ii) Inserting element into Queue
- c) What is Data Structure? Discuss briefly different types of data structure.

Q2) Solve any TWO from THREE

[16]

- a) What is Linear search? Write algorithm for linear search in case of an array and explain its time complexity.
- b) Describe with 'C' code deletion of nodes from linked list
- c) Translate, by inspection, each infix expression to the corresponding postfix and prefix expression
 - i) (A+B)*D)/(E-F)
 - ii) A+B/C*(D+E/F-G)+H

Q3) Solve any TWO from THREE

[16]

- a) Write the C program for PUSH operation and POP operation
- b) What is time space trade off? Explain with example.
- c) What is Queue? Explain different types of queue.

SECTION - II

Q4) Solve any TWO

[18]

- a) Write an algorithm for post order traversal using stacks
- b) Explain insertion in m-way search tree with proper example
- c) Explain construction of heap tree with example

Q5) Solve any TWO

[16]

- Explain binary tree with neat diagram and properties
- b) Explain traversing operation on a graph and its types
- c) Explain insertion of a node in AVL tree with different propositions

Q6) Solve any TWO from THREE

[16]

- a) Write an algorithm for shortest path algorithm.
- b) Explain different collision resolution techniques.
- Consider graph G in the figure below, Suppose the nodes are stored in an array in a memory as follows X,Y,Z,S,T then

- i) Find the adjacency matrix A of G.
- ii) Find the path matrix P of G.
- iii) Is G strongly connected?

Total No. of Pages: 2

S.E. (Part - II) (ETC) (Semester - IV) Examination, May - 2018 ANALOG COMMUNICATION SYSTEM

Sub. Code: 63470

Day and Date: Wednesday, 16 - 05 - 2018

Total Marks: 100

Time: 10.00 a.m. to 01.00 p.m.

Instructions:

- 1) All questions are compulsroy.
- 2) Figures to the right indicate full marks.
- Assume suitable data if necessary.

SECTION - I

Q1) Solve any three.

 $[3\times 6=18]$

- a) Explain need of modulation
- b) An AM transmitter operating at carrier frequency of 1 MHZ and modulating frequency of 5 KHZ and modulated at 60% depth delivers a carrier power of 6KW into 50 Ω load, Obtain power delivered to load ,total power of modulated signal in db & watt.
- c) Draw and explain high level DSBFC.
- d) Describe operation of third method of SSB.

Q2) Solve any two.

 $[2\times8=16]$

- a) Comment on pre-emphasis and de-emphasis used in FM.
- b) Compare AM with FM.
- c) Describe direct method of FM generation

Q3) Solve any two.

 $[2\times8=16]$

- a) Define receiver parameters Selectivity, Sensitivity, Fidelity, Dynamic range.
- b) Describe TRF receiver comment on limitations.
- c) Explain demodulation of SSB.

SECTION - II

Q4) Solve any two

 $[2\times8=16]$

- a) Write note on FM Noise triangle.
- b) Explain Ratio detector.
- c) Explain with block diagram double conversion FM receiver.

Q5) Solve any two

 $[2 \times 8 = 16]$

- a) Explain flat top sampling also compare with natural sampling
- b) Explain thermal noise and partition noise
- c) Write note on classification of noise

Q6) Solve any three

 $[3\times 6=18]$

- a) Draw and explain PPM modulator and demodulator.
- b) Compare PAM with PWM.
- c) Explain effect of aliasing in sampling.
- d) Explain PCM with block diagram.

 $\triangle \triangle \triangle \triangle$

Total No. of Pages: 2

S.E. (Electronics & Telecommunication) (Semester - III)

Examination, April - 2018 ANALOG CIRCUITS - I

Sub. Code: 63461

Day and Date: Wednesday, 25 - 04 - 2018

Total Marks: 100

Time: 02.30 p.m. to 05.30 p.m.

Instructions:

- 1) All questiosns are compulsory.
- 2) Right to figure indicates full marks.
- 3) Use data sheets
- Assume suitable data wherever necessary.

SECTION-I

Q1) Solve any two:

[16]

- Explain working of high pass filter as a differentiator Design high pass filter for cutoff frequency of 6kHz.
- What is clamper circuit? Explain the operation of negative clamper in detail.
- c) Write short note on voltage trippler.

Q2) Solve any two

[16]

- a) Explain HWR with resistive load Derive expressions for
 - i) Vdc

ii) Vrms

iii) r

- iv) Rectification efficiency (η)
- What is need of filter? explain with neat diagram & waveforms capacitor filter in detail.
- c) Design power supply using LC filter for following specifications. Vdc = 12v, Idc = 90 mA, r = 0.01.

Q3) Solve any two:

[18]

- a) Explain working of zener shunt regulator and hence design it for $V_0 = 5.1v$, $I_0 = 50mA$, Vin = 7 to 15 V.
- b) Design feedback type series pass regulation should provide $V_0 = 9.4$, $I_0 = 80 \text{mA}$, Vin = 15 to 20v use transistor Q_1 (controller) having hfe = 40 and transistor Q_2 (error) having hfe = 110
- c) Explain different overload protection circuits used in voltage regulation.

Q4) Attempt any two questions.

- Draw and explain hybrid equivalent circuit for CC configuration of transistor.
- b) Derive expression for A₁, Y₁, Av and Ro of C_E amplifier in terms of h-parameter.
- c) Derive expression for lower 3dB frequency of CE amplifier by considering coupling capacitor [Cc]. Calculate Cc for $R_1 = 12K\Omega$, $R_2=6.8\Omega$, hie = 4.5 K Ω , hfe = 320, Rs=400 Ω .

Q5) Attempt any two questions.

[16]

- a) Draw and explain high frequency model for transistor. Derive expression for f_B and f_T Consider R_L.
- Derive the expression for higher cut off frequency of R-C coupled amplifier considering square wave.
- c) Design single stage R-C coupled C_E amplifier Vcc = 12V, hfe = 150, AV = 60, hie = 2.2Ω , frequency range 20kHz, S = 10

Q6) Attempt any three question.

- a) Derive the expression for lower cut off frequency of R-C coupled amplifier considering square wave.
- b) Explain the transfer characteristics of n channel JFET.
- c) Explain with circuit self bias for FET.
- d) For C_E amplifier has hfe = 100, hie = $2K\Omega$, hoe = 50×10^{-6} , hre = 2×10^{-4} , Rc = $2K\Omega$, RL = $5.6K\Omega$, R_1 = $10 K\Omega$, R_2 = $4.7 K\Omega$. Calculate Av, Ai, Yo.

Seat No.

S.E. (E.&TC) (Semester - III) Examination, April - 2018 TRANSDUCER & MEASUREMENT (Revised)

Sub. Code: 63464

Day and Date: Saturday, 28 - 04 - 2018

Total Marks: 100

Time: 02.30 p.m. to 05.30 p.m.

SECTION - I

Q1) Attempt any two:

[16]

- Define transducer. Explain the various factors for the selection of transducer for a specific application.
- b) What is pressure transducer. Explain any one in detail.
- c) Explain signal conditioning system.

Q2) Attempt any two:

[16]

- a) Explain the electromagnetic flowmeter in detail.
- Explain the first order LPF and derive the expression for the cutoff frequency.
- c) Explain photo transistor in detail.

Q3) Write short notes on (any three):

[18]

- a) Active Band stop filter.
- b) Thermocouple
- c) Null & deflection type instruments.
- d) Successive approximation ADC

SECTION - II

Q4) Answer any two:

[16]

- Explain various types and sources of errors in measurement system
- b) With block schematic and waveforms, explain Integrating type Digital voltmeter.
- c) With block diagram explain Logic Analyzer.

Q5) Answer any two:

[16]

- a) What is Attenuator? Explain types of Attenuator in detail.
- b) A schering bridge has $3300\,\Omega$ in one arm and its opposite arm has capacitor value of 0.47 uf. The arm to the right of resistor arm is having $1500\,\Omega$ resistor shunt with 0.33 uf. Capacitor. Opposite to this arm unknown components are connected. Find value of component & its dissipation factor. Assume $f = 1000\,\text{Hz}$.
- c) Derieve expression for Wien Bridge.

Q6) Write short notes (any three)

- a) CRO Probes
- b) De sauty's Bridge
- c) Spectrum Analyzer
- d) Digital multimeter

Seat No.

S.E. (Electronics and Telecommunication) (Part - II) (Semester - III) Examination, April - 2018 DIGITAL ELECTRONICS

Sub. Code: 63462

Day and Date : Thursday, 26 - 04 - 2018

Total Marks: 100

Time: 02.30 p.m. to 05.30 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Assume appropriate data if needed.
- Q1) Solve any two of the following.

[16]

- a) Design and implement full adder.
- b) Design and implement one bit comparator.
- c) Give the specifications of digital IC's & explain propagation delay.
- Q2) Solve any two of the following.

[16]

- a) Design and implement 4 bit Binary to Gray code converter.
- b) Design 8:1 MUX using two 4:1 MUX.
- c) Design following logic function using 16: 1MUX with truth table $F = \Sigma \ m(0,1,3,5,8,11,12,14,15)$
- Q3) Solve any two of the following.

[18]

- a) Evaluate & minimize following expression using k-map $F(ABCD)=\Sigma m(0,1,4,5,6,7,9,11,15)+d(10,14)$
- b) Design & implement 4 bit adder/subtractor using I C7483.
- c) Explain Demux/Decoder IC 74138. LEGE OF

Q4) Solve any two of the following

[16]

- Explain J-K flip-flop with truth table & circuit diagram & also explain race around condition.
- b) Design & implement 3 bit ripple counter.
- c) Explain serial In/serial out shift register (SISO)

Q5) Solve any two of the following.

[16]

- a) Differentiate between TTL & CMOS
- b) Draw & explain 4 bit synchronous up-counter.
- c) Give general classification of memories & explain any one in brief.

Q6) Solve any two of the following.

- a) What is CMOS inverter? Explain with help of circuit diagram and inputoutput characteristics.
- b) Generate excitation tables for all the flip-flops.
- c) Explain Five-bit Johnson counters with timing diagram.

b) Design a m - derived high pass filter with a cut off frequency of 10kHz, design impedance of 5Ω and m = 0.4 [8]

27) a) Explain a complete response of series R-L circuit for sinusoidal input.[8]

b) In the circuit shown, obtain the equations for $i_1(t)$ and $i_2(t)$ when the switch 's' is closed at t = 0 [8]

28) Solve any three.

a) Compare Series resonance and paralled resonance circuit. [6]

b) Explain Dc response of RLC series circuit. [6]

c) Design constant K-type low pass filter (both T and π sections) having a cutoff frequency of 2kHz to operate with a terminated load resistance of 500Ω

d) Design a Band Elimination filter having a design impedance of 600Ω and cut off frequencies $f_1 = 2kHz$ and f2 = 6 kHz. [6]

Seat No.

Total No. of Pages: 4

S.E. (Electronics and Telecommunication) (Semester-III)

Examination, April - 2018

NETWORK ANALYSIS (Revised)

Sub. Code: 63463

)ay and Date: Friday, 27 - 04 - 2018

Total Marks: 100

'ime: 02.30 p.m. to 05.30 p.m.

nstructions:

1) Q. No. 4 from section - I and Q. No.8 from section - II is compulsory and solve any two questions from remaining three questions of each section

2) Figures to the right indicate full marks.

3) Assume suitable data wherever necessary.

SECTION - I

(21) a) State and prove maximum power transfer theorem for D.C. Network.[8]

b) Determine the voltage 'V' which causes the Current I₁ to be zero. Use mesh analysis. [8]

(92) a) Determine norton's equivalent circuit for the given circuit.

[8]

-4

b) For the circuit shown, determine the load current using thevenin's theorem.

[8]

23) a) Obtain ABCD parameters in terms of Y parameters for two port network.

[8]

b) Find the transmission parameters for given circuit. [8]

24) Solve any three.

a) For a given function draw pole - Zero plot and find i(t).

[6]

$$I(S) = \frac{4.5}{(S+1)(S+2)}$$

b) Obtain the incidence matrix A from the following reduced incidence matrix A1 and draw its graph. [6]

$$\begin{bmatrix} A_1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 1 \end{bmatrix}$$

d) Determine the maximum power delivered to the load for given circuit.[6]

SECTION - II

25) a) Derive equation of resonant frequency for tank circuit.

[8]

SV - 443

b) Find the value of L for which the circuit shown, is resonant at a frequency of w = 500 rad/sec. [8]

Total No. of Pages: 3

S.E. (Electronics and Telecommunication Engineering) (Part - II) (Semester - III) Examination, April - 2018 ENGINEERING MATHEMATICS - III

Sub. Code: 63460

Day and Date: Tuesday, 24 - 04 - 2018

Total Marks: 100

Time: 02.30 p.m. to 05.30 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

3) Use of non-programmable calculator is allowed.

SECTION - I

Q1) Solve any three of the following:

a) $(D^2 + 4D + 5)y = -2 \cosh x$

[6]

b) $(D^2 - 3D - 4) y = e^x \cos x$

[6]

c) $(D^3 - 2D + 4)y = 3x^2 - 5x + 2$

[6]

d)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = \frac{1}{1 + e^x}$$

[6]

- Q2) Attempt any two of the following:
 - a) find the fourier series for,

$$f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi 2}{8}$

[8]

b) Obtain a fourier expression of $f(x) = 2x-x^2$ in intervel (0,2).

[8]

c) Obtain half range sine series for

[8]

$$f(x) = \frac{\pi}{3}, \qquad 0 \le x \le \frac{\pi}{3}$$
$$= 0, \qquad \frac{\pi}{3} \le x \le \frac{2\pi}{3}$$
$$= -\frac{\pi}{3}, \qquad \frac{2\pi}{3} \le x \le \pi$$

- 3) Attempt any two of the following:
 - a) Find Fourier trans form of

$$f(x)=1-x^2, |x| \le 1$$

=0, otherwise

[8]

- b) Find fourier sine and cosine transforms of the function $f(x) = x^{n-1}$. [8]
- c) i) find f(x) satisfying following integral equation. [5]

$$\int_{0}^{\infty} f(x) \sin sx dx = \begin{cases} 1, & 0 \le s \le 1\\ 2, & 1 \le s \le 2\\ 0, & s \ge 2 \end{cases}$$

ii) if $f(x) = \sin px$, where $0 \le x \le \pi$ and p is a positive integer, show that finite Fourier sine transform of f(x), F(n) = 0 if $n \ne p$. [3]

SECTION - II

14) Attempt any three of the following:

a) Find
$$L\left\{\int_{0}^{t} \frac{e^{-u}\sin 2u}{u} du\right\}$$
. [6]

b) Find the Laplace transform of

$$f(t) = t, 0 < t \le a$$

$$= 2a - t, a < t < 2a$$

$$\text{where } f(t) = f(t + 2a).$$

- c) Evaluate $\int_{0}^{\infty} te^{-3t} J_{0}(4t) dt$, given that $L\{J_{0}(t)\} = \frac{1}{\sqrt{s^{2}+1}}$. [6]
- d) The current flowing in an electrical circuit is given by $Ri + L\frac{di}{dt} = E$ where E, L and R are constants. Use laplace transform to solve the equation for i given that i = 0 when t = 0 [6]

- 5) Attempt any two of the following:
 - a) i) By using definition, find the Z-transform of $\{f(k)\}\$, where [4]

$$f(k) = 5^k, k < 0$$
$$= 3^k, k \ge 0$$

ii) Find the z-transform of k²e^{k0}

[4]

[8]

- b) Show that $Z\{\cos h \alpha k\} = \frac{z(z-\cosh \alpha)}{z^2-2z\cosh \alpha+1}, k \ge 0.$
- c) Find the inverse Z- transform of $\frac{1}{(z-3)(z-2)}$ for
 - i) 2<|z|<3,
 - ii) |z|>3

[8]

- 26) Attempt any two of the following:
 - a) Find the directional derivative of $f = xy^2 + yz^3$ at the point (2,-1,1) in the direction of normal to the surface x log $z y^2 = -4$ at (-1,2,1). [8]
 - b) If \overline{a} is a constant vector and $\overline{r} = xi + yj + zk$, $r = |\overline{r}|$ then
 - i) Prove that $\nabla(\overline{a}\cdot\overline{r}) = \overline{a}$
 - ii) Evaluate $\nabla^2 e^{r^2}$

[5]

[3]

 Show that the following vector field is irrotational and find the corresponding scalar potential. Also show that it is not solenoidal. [8]

$$\vec{F} = (ye^{xy}\cos z)i + (xe^{xy}\cos z)j - (e^{xy}\sin z)k$$

