# DESIGN AND DEVELOPMENT OF STEAM OPERATED JAGGERY MAKING SYSTEM

Mr. Satish S. Patil, Mr. Kartik P. Pol, Ms .Anuradha S. Khaire, Ms. Pooja P. Sitre,

Ms. Pooja N. Gurav, Prof Pravin D. Rajigare.

U.G. Student, Department of Mechanical Engineering, Bharati Vidyapeeth's College of

Engineering, Kolhapur, India.

Assistant Professor, Department of Mechanical Engineering, Bharati Vidyapeeth's College of

Engineering, Kolhapur, India.

Abstract: In India jaggery industry is one of the most essential parts of the industries. In every part process of jaggery making is same but there is design of plants. In jaggerymaking process heating method is important. In this paper proposed system to improve the production rate, increase the quality of jaggery. This proposed model is designed to control the process of manufacturing jaggery product. In this system first we have developed pan with is having heating from base with baffles. but cost of this system increases. Hence previous design is changed. therefore we have made new proposed design. The improved system and previous system are compared on the basis of bagasse consumption, reduce pollution and increase quality of jaggery

#### Keywords: Jaggery, Pan jaggery making unit, Steam, Sugarcane juice, I INTRODUCTION

Jaggery is natural, traditional, sweetener made by concentration of sugarcane juice. It containsall minerals and vitamins present in sugar cane juice and that is called as healthiest sugar in the world. it is rich in important minerals like salts:2.8gm/100gm, whereas only 300mg/kg is obtained in refined sugar.Jaggery is rich in important minerals like calcium 40-100mg, magnesium 70-90 mg, potassium 1056mg, sodium 19-30mg, iron 10-13mg,zinc 0.2-0.4mg,Vitamin A-3.8 mg, Vitamin B1-0.01mg,vitamin C-7 mg, Vitamin D2-6.50mg, protein 280mg/100gm of Jaggery. This micronutrients present in the Jaggeryposses antitoxic and anti carcinogenic property,



Fig: General temperature in jaggery making process

- NATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY. NCETET-2017,7<sup>th</sup>March 2017,BVCOE,Kolhapur. ISSN:22315063

| Temperature | Time span | Add additives       |  |
|-------------|-----------|---------------------|--|
| 27-85       | 27 min    | Bhendi powder       |  |
| 85-97       | 9 min     | First ash(Dhormali) |  |
| 85-97       | 12 min    | Use of acid         |  |
| 98-99       | 54 min    | Boiling of syrup    |  |
| 99-101      | 12 min    | Second ash(sonmali) |  |
| 101-105     | 16 min    | Splitting of syrup  |  |
| 105-118     | 20 min    | Solid jaggery       |  |

I

n required heating system bagasse is used. This system requires heating chamber & 45% heat is required for making jaggery. Out of 45% heat from bagasse is used to 39% heat is required for removal of water in the form of steam,6% required in present temperature from 99° to 118°,0.1% to change liquid to solid jaggery. We have scope to reduce 55% heat losses from bagasse by the use of steam, 39% of heat is required to remove water or steam from juice & we can reuse this steam for heating the juice. **II CASE 1: DESIGN OF PAN** 

In this system of pan hot steam entered from the inlet and flows through the baffles in the zigzag way. Numbers of baffles are provided in the pan due that steam gives heat to the surface of the pan. After flowing from the baffles steam is condensed and gives its latent heat to pan. Condensed steam is flows from outlet. Pressure drop in this pan is a minimum. Energy losses are less. Easy to design. Cost is a minimum. It maintains the required temperature. Heat at the inlet of pan is more due that collection of ash is easy.



Fig: Steam chamber

| SR No | Heating System  | LPG gas  | Bagasse  | Steam    |             |
|-------|-----------------|----------|----------|----------|-------------|
|       |                 |          |          | using    | using       |
|       |                 |          |          | Bagasse  | electricity |
| 1     | Mass required   | 0.2 Kg   | 2 Kg     | 3.82 Kg  | 3.82 Kg     |
| 2     | Energy required | 8500KJ   | 12256 KJ | 9805 KJ  | 8528KJ      |
| 3     | Time required   | 1:50 hrs | 2:40 hrs | 1:42 hrs | 1:42 hrs    |
| 4     | Cost (Rs)       | 18       | 2.71     | 2.17     | 16.52       |
| 5     | Quality         | Good     | Good     | Best     | Best        |
| 6     | Safety          | Good     | Less     | Good     | Good        |

### Fig: comparison of various system

### **Case 2:Proposed design**

### Calculation of mass flow rate of steam & energy requirement:-

Properties of steam:-

- 1. Pressure of steam=  $1.962 \text{ N/m}^2$
- 2. Temperature of steam= 120°C
- 3. Specific enthalpy of steam =2201.6KJ/Kg

Properties of sugarcane juice:-

- 1. Temperature range= 378k to 391k
- 2. Thermal conductivity = 0.475 to 0.493 w/mk
- 3. Density= 1044.5 to 1189.5 Kg/ $m^3$
- 4. Specific heat at constant pressure = 3.67 KJ/Kg k

Formulae:

 $Q = m_{jC_p} \Delta T$ 

Q=Rate of heat transfer

 $m_j$ =Mass of juice.

 $C_p$ =Specific heat juice.

 $\Delta T$ =Temperature difference.

ms= $\frac{m_{jC_p}\Delta T}{\Delta h}$ 

ms=mass of steam.

 $m_j$ =Mass of juice.

 $C_p$ =Specific heat juice.

## $\Delta T$ =Temperature difference.

 $\Delta h$ =Change in enthalpy.

| Processes | Temperature°C | Time in | Total Mass   | Steam Flow | Steam Flow Rate |
|-----------|---------------|---------|--------------|------------|-----------------|
|           |               | Minute  | Flow Rate in | Rate in Kg | per Hour Kg/hr  |
|           |               |         | KJ           |            |                 |
|           |               |         |              |            |                 |
| 1         | 27-85         | 27      | 851.44       | 0.387      | 0.86            |
| 2         | 85-97         | 9       | 158.54       | 0.071      | 0.4733          |
| 3         | 85-97         | 12      | 689.26       | 0.0305     | 1.525           |
| 4         | 98-99         | 54      | 2720.37      | 1.20       | 1.33            |
| 5         | 99-101        | 12      | 1142.91      | 0.50       | 2.5             |
| 6         | 101-105       | 16      | 1376.17      | 0.60       | 2.28            |
| 7         | 105-118       | 20      | 1498.80      | 0.66       | 1.98            |
| Total     | -             | 148     | 8437.49      | 3.723      | 10.9483         |

Iteration table:

| Sr no       | U   | D    | А     | L    | ho    | hi     |
|-------------|-----|------|-------|------|-------|--------|
| 1 Iteration | 250 | 0.51 | 0.20  | 5.20 | 0.019 | 0.0141 |
| 2 Iteration | 300 | 0.46 | 0.17  | 4.34 | 0.024 | 0.0174 |
| 3 Iteration | 350 | 0.43 | 0.14  | 3.71 | 0.027 | 0.019  |
| 4 Iteration | 400 | 0.40 | 0.129 | 3.25 | 0.031 | 0.023  |
| 5 Iteration | 410 | 0.40 | 0.126 | 3.18 | 0.031 | 0.023  |

Calculating area of pan,

\_

 $Q_{max} = 1500 \text{ KJ}$ 

$$\frac{1500\times10^3}{75\times60} = 333.3$$
$$Q = UA\theta_m$$

Where, consider 5<sup>th</sup> iteration

U = 410  

$$\theta_m = \left(\frac{15-2}{l_n \frac{15}{2}}\right) = 6.45$$
  
333.33= 410× A × 6.45  
A = 0.1260 m<sup>2</sup>  
A=  $\pi DL$   
0.1260= $\pi$  × 0.0126 × L  
L = 3.18mA =  $\frac{\pi}{4}$  × D<sup>2</sup>, D =  $\sqrt{\frac{4\times 0.1260}{\pi}}$   
D = 0.40m



Fig: new design pan

## **III CONCLUSION:**

The steam operated system is used instead of bagasse system. If the bagasse system is used, more pollution produced. There are also pressure drop and energy losses created. The pan having heating from with baffle, so area of pan increases at that time pressure and temperature low at base of baffle. Therefore cost of this system increases so it need to improve. Hence we have designed new pan system.

#### **References:**

1. Pankaj K Arya, Satish Kumar, U. K. Jaiswal, "Design based improvement in a three pan *jaggery*making plant for rural India", International journal of engineering research ,Volume no.2, issue no. 3, pp : 264-268 01 July 2013

2. Ganesh B. Agalave ,"Performance improvement of a single pan Traditional jaggery making furnace by Using fins and baffle" International journal of advance research in science and engineering, IJARSE, vol. No.4, issue 04, April 2015 issn-2319-8354

3. Mahesh Kumar, "Effect of internal heating on sensible behaviour of Sugarcane juice in a stainless steel pot" *Udc 664.1.04; 621.1.016.4*, Series: mechanical engineering vol. 10, no 2, 2012, pp. 113 - 124

4. Milind V. Rane , Siddharth K. Jabade , "Freeze concentration of sugarcane juice in a Jaggery making process", , Mechanical Engineering Department, Heat Pump Laboratory, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

5. V.B. Bhandari., "Design of machine element"